Skip to main content
Log in

Nanostructured organic electrode materials grown on graphene with covalent-bond interaction for high-rate and ultra-long-life lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanostructured organic tetralithium salts of 2,5-dihydroxyterephthalic acid (Li4C8H2O6) supported on graphene were prepared via a facile recrystallization method. The optimized composite with 75 wt.% Li4C8H2O6 was evaluated as an anode with redox couples of Li4C8H2O6/Li6C8H2O6 and as a cathode with redox couples of Li4C8H2O6/Li2C8H2O6 for Li-ion batteries, exhibiting a high-rate capability (10 C) and long cycling life (1,000 cycles). Moreover, in an all-organic symmetric Li-ion battery, this dual-function electrode retained capacities of 191 and 121 mA·h·g–1 after 100 and 500 cycles, respectively. Density functional theory calculations indicated the presence of covalent bonds between Li4C8H2O6 and graphene, which affected both the morphology and electronic structure of the composite. The special nanostructures, high electronic conductivity of graphene, and covalent-bond interaction between Li4C8H2O6 and graphene contributed to the superior electrochemical properties. Our results indicate that the combination of organic salt molecules with graphene is useful for obtaining high-performance organic batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Ribière, P.; Poizot, P.; Tarascon, J. M. Conjugated dicarboxylate anodes for Li-ion batteries. Nat. Mater. 2009, 8, 120–125.

    Article  Google Scholar 

  2. Liang, Y. L.; Tao, Z. L.; Chen, J. Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2012, 2, 742–769.

    Article  Google Scholar 

  3. Lee, M.; Hong, J.; Kim, H.; Lim, H. D.; Cho, S. B.; Kang, K.; Park, C. B. Organic nanohybrids for fast and sustainable energy storage. Adv. Mater. 2014, 26, 2558–2565.

    Article  Google Scholar 

  4. Cheng, F. Y.; Tang, W.; Li, C. S.; Chen, J.; Liu, H. K.; Shen, P. W.; Dou, S. X. Conducting poly(aniline) nanotubes and nanofibers: Controlled synthesis and application in lithium/poly(aniline) rechargeable batteries. Chem.—Eur. J. 2006, 12, 3082–3088.

    Article  Google Scholar 

  5. Wang, H.; Yang, Y.; Guo, L. Nature-inspired electrochemical energy-storage materials and devices. Adv. Energy Mater. 2017, 7, 1601709.

    Article  Google Scholar 

  6. Zhao, Q.; Wang, J. B.; Lu, Y.; Li, Y. X.; Liang, G. X.; Chen, J. Oxocarbon salts for fast rechargeable batteries. Angew. Chem., Int. Ed. 2016, 55, 12528–12532.

    Article  Google Scholar 

  7. Song, Z. P.; Zhou, H. S. Towards sustainable and versatile energy storage devices: An overview of organic electrode materials. Energy Environ. Sci. 2013, 6, 2280–2301.

    Article  Google Scholar 

  8. Häupler, B.; Wild, A.; Schubert, U. S. Carbonyls: Powerful organic materials for secondary batteries. Adv. Energy Mater. 2015, 5, 1402034.

    Article  Google Scholar 

  9. Hu, P. F.; Wang, H.; Yang, Y.; Yang, J.; Lin, J.; Guo, L. Renewable-biomolecule-based full lithium-ion batteries. Adv. Mater. 2016, 28, 3486–3492.

    Article  Google Scholar 

  10. Zhao, Q.; Lu, Y.; Chen, J. Advanced organic electrode materials for rechargeable sodium-ion batteries. Adv. Energy Mater. 2017, 7, 1601792.

    Article  Google Scholar 

  11. Zhang, K.; Guo, C. Y.; Zhao, Q.; Niu, Z. Q.; Chen, J. High-performance organic lithium batteries with an etherbased electrolyte and 9,10-anthraquinone (AQ)/CMK-3 cathode. Adv. Sci. 2015, 2, 1500018.

    Article  Google Scholar 

  12. Genorio, B.; Pirnat, K.; Cerc-Korosec, R.; Dominko, R.; Gaberscek, M. Electroactive organic molecules immobilized onto solid nanoparticles as a cathode material for lithium-ion batteries. Angew. Chem., Int. Ed. 2010, 49, 7222–7224.

    Article  Google Scholar 

  13. Zhang, K.; Hu, Z.; Tao, Z. L.; Chen, J. Inorganic & organic materials for rechargeable Li batteries with multi-electron reaction. Sci. China Mater. 2014, 57, 42–58.

    Article  Google Scholar 

  14. Han, X. Y.; Chang, C. X.; Yuan, L. J.; Sun, T. L.; Sun, J. T. Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials. Adv. Mater. 2007, 19, 1616–1621.

    Article  Google Scholar 

  15. Liang, Y. L.; Zhang, P.; Chen, J. Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries. Chem. Sci. 2013, 4, 1330–1337.

    Article  Google Scholar 

  16. Song, Z. P.; Zhan, H.; Zhou, Y. H. Polyimides: Promising energy-storage materials. Angew. Chem., Int. Ed. 2010, 122, 8622–8626.

    Article  Google Scholar 

  17. Pirnat, K.; Mali, G.; Gaberscek, M.; Dominko, R. Quinoneformaldehyde polymer as an active material in Li-ion batteries. J. Power Sources 2016, 315, 169–178.

    Article  Google Scholar 

  18. Liang, Y. L.; Chen, Z. H.; Jing, Y.; Rong, Y. G.; Facchetti, A.; Yao, Y. Heavily n-dopable π-conjugated redox polymers with ultrafast energy storage capability. J. Am. Chem. Soc. 2015, 137, 4956–4959.

    Article  Google Scholar 

  19. Ma, T.; Zhao, Q.; Wang, J. B.; Pan, Z.; Chen, J. A sulfur heterocyclic quinone cathode and a multifunctional binder for a high-performance rechargeable lithium-ion battery. Angew. Chem., Int. Ed. 2016, 55, 6428–6432.

    Article  Google Scholar 

  20. Wu, H. P.; Meng, Q. H.; Yang, Q.; Zhang, M.; Lu, K.; Wei, Z. X. Large-area polyimide/SWCNT nanocable cathode for flexible lithium-ion batteries. Adv. Mater. 2015, 27, 6504–6510.

    Article  Google Scholar 

  21. Wu, J. S.; Rui, X. H.; Wang, C. Y.; Pei, W.-B.; Lau, R.; Yan, Q. Y.; Zhang, Q. C. Nanostructured conjugated ladder polymers for stable and fast lithium storage anodes with high-capacity. Adv. Energy Mater. 2015, 5, 1402189.

    Article  Google Scholar 

  22. Huang, W. W.; Zhu, Z. Q.; Wang, L. J.; Wang, S. W.; Li, H.; Tao, Z. L.; Shi, J. F.; Guan, L. H.; Chen, J. Quasi-solid-state rechargeable lithium-ion batteries with a calix[4]quinone cathode and gel polymer electrolyte. Angew. Chem., Int. Ed. 2013, 52, 9162–9166.

    Article  Google Scholar 

  23. Zhu, Z. Q.; Hong, M. L.; Guo, D. S.; Shi, J. F.; Tao, Z. L.; Chen, J. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. J. Am. Chem. Soc. 2014, 136, 16461–16464.

    Article  Google Scholar 

  24. Wang, L. P.; Zhang, H. Q.; Mou, C. X.; Cui, Q. L.; Deng, Q. J.; Xue, J.; Dai, X. Y.; Li, J. Z. Dicarboxylate CaC8H4O4 as a high-performance anode for Li-ion batteries. Nano Res. 2015, 8, 523–532.

    Article  Google Scholar 

  25. Zhao, Q.; Guo, C. Y.; Lu, Y.; Liu, L. J.; Liang, J.; Chen, J. Rechargeable lithium batteries with electrodes of small organic carbonyl salts and advanced electrolytes. Ind. Eng. Chem. Res. 2016, 55, 5795–5804.

    Article  Google Scholar 

  26. Chen, H. Y.; Armand, M.; Demailly, G.; Dolhem, F.; Poizot, P.; Tarascon, J.-M. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem 2008, 1, 348–355.

    Article  Google Scholar 

  27. Wang, H. G.; Yuan, S.; Si, Z. J.; Zhang, X. B. Multi-ring aromatic carbonyl compounds enabling high capacity and stable performance of sodium-organic batteries. Energy Environ. Sci. 2015, 8, 3160–3165.

    Article  Google Scholar 

  28. Renault, S.; Gottis, S.; Barrès, A.-L.; Courty, M.; Chauvet, O.; Dolhem, F.; Poizot, P. A green Li-organic battery working as a fuel cell in case of emergency. Energy Environ. Sci. 2013, 6, 2124–2133.

    Article  Google Scholar 

  29. Wang, S. W.; Wang, L. J.; Zhang, K.; Zhu, Z. Q.; Tao, Z. L.; Chen, J. Organic Li4C8H2O6 nanosheets for lithium-ion batteries. Nano Lett. 2013, 13, 4404–4409.

    Article  Google Scholar 

  30. Luo, C.; Huang, R. M.; Kevorkyants, R.; Pavanello, M.; He, H. X.; Wang, C. S. Self-assembled organic nanowires for high power density lithium ion batteries. Nano Lett. 2014, 14, 1596–1602.

    Article  Google Scholar 

  31. Xiang, J. F.; Chang, C. X.; Li, M.; Wu, S. M.; Yuan, L. J.; Sun, J. T. A novel coordination polymer as positive electrode material for lithium ion battery. Cryst. Growth Des. 2008, 8, 280–282.

    Article  Google Scholar 

  32. Walker, W.; Grugeon, S.; Mentre, O.; Laruelle, S.; Tarascon, J.-M.; Wudl, F. Ethoxycarbonyl-based organic electrode for Li-batteries. J. Am. Chem. Soc. 2010, 132, 6517–6523.

    Article  Google Scholar 

  33. Kim, H.; Seo, D.-H.; Yoon, G.; Goddard, W. A.; Lee, Y. S.; Yoon, W.-S.; Kang, K. The reaction mechanism and capacity degradation model in lithium insertion organic cathodes, Li2C6O6, using combined experimental and first principle studies. J. Phys. Chem. Lett. 2014, 5, 3086–3092.

    Article  Google Scholar 

  34. Tian, X. C.; Xiao, B.; Xu, X.; Xu, L.; Liu, Z. H.; Wang, Z. Y.; Yan, M. Y.; Wei, Q. L.; Mai, L. Q. Vertically stacked holey graphene/polyaniline heterostructures with enhanced energy storage for on-chip micro-supercapacitors. Nano Res. 2016, 9, 1012–1021.

    Article  Google Scholar 

  35. Wu, H. P.; Shevlin, S. A.; Meng, Q. H.; Guo, W.; Meng, Y. N.; Lu, K.; Wei, Z. X.; Guo, Z. X. Flexible and binder-free organic cathode for high-performance lithium-ion batteries. Adv. Mater. 2014, 26, 3338–3343.

    Article  Google Scholar 

  36. Park, M.; Shin, D.-S.; Ryu, J.; Choi, M.; Park, N.; Hong, S. Y.; Cho, J. Organic-catholyte-containing flexible rechargeable lithium batteries. Adv. Mater. 2015, 27, 5141–5146.

    Article  Google Scholar 

  37. Guo, W.; Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene. Energy Environ. Sci. 2012, 5, 5221–5225.

    Article  Google Scholar 

  38. Song, Z. P.; Xu, T.; Gordin, M. L.; Jiang, Y.-B.; Bae, I.-T.; Xiao, Q. F.; Zhan, H.; Liu, J.; Wang, D. H. Polymer–graphene nanocomposites as ultrafast-charge and -discharge cathodes for rechargeable lithium batteries. Nano Lett. 2012, 12, 2205–2211.

    Article  Google Scholar 

  39. Yu, Q. P.; Chen, D. R.; Liang, J. H.; Chu, Y. H.; Wu, Y. W.; Zhang, W. G.; Li, Y. S.; Li, L.; Zeng, R. H. Facile synthesis of Li2C8H4O4-graphene composites as high-rate and sustainable anode materials for lithium ion batteries. RSC Adv. 2014, 4, 59498–59502.

    Article  Google Scholar 

  40. Xiang, X. D.; Lu, Y. Y.; Chen, J. Advance and prospect of functional materials for sodium ion batteries. Acta Chim. Sinica 2017, 75, 154–162.

    Article  Google Scholar 

  41. Meng, Y. N.; Wu, H. P.; Zhang, Y. J.; Wei, Z. X. A flexible electrode based on a three-dimensional graphene network-supported polyimide for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 10842–10846.

    Article  Google Scholar 

  42. Liang, Y. L.; Zhang, P.; Yang, S. Q.; Tao, Z. L.; Chen, J. Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries. Adv. Energy Mater. 2013, 3, 600–605.

    Article  Google Scholar 

  43. Wang, H.; Hu, P. F.; Yang, J.; Gong, G. M.; Guo, L.; Chen, X. D. Renewable-juglone-based high-performance sodium-ion batteries. Adv. Mater. 2015, 27, 2348–2354.

    Article  Google Scholar 

  44. Yu, Y. X. A dispersion-corrected DFT study on adsorption of battery active materials anthraquinone and its derivatives on monolayer graphene and h-BN. J. Mater. Chem. A 2014, 2, 8910–8917.

    Article  Google Scholar 

  45. Krepel, D.; Hod, O. Lithium-mediated benzene adsorption on graphene and graphene nanoribbons. J. Phys. Chem. C 2013, 117, 19477–19488.

    Google Scholar 

  46. Pei, L. K.; Jin, Q.; Zhu, Z. Q.; Zhao, Q.; Liang, J.; Chen, J. Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three-dimensional graphene. Nano Res. 2015, 8, 184–192.

    Article  Google Scholar 

  47. McAllister, M. J.; Li, J.-L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.

    Article  Google Scholar 

  48. Wang, L. J.; Zhang, K.; Hu, Z.; Duan, W. C.; Cheng, F. Y.; Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 2014, 7, 199–208.

    Article  Google Scholar 

  49. Zhang, K.; Zhao, Q.; Tao, Z. L.; Chen, J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 2013, 6, 38–46.

    Article  Google Scholar 

  50. Zhu, Z. Q.; Cheng, F. Y.; Chen, J. Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites. J. Mater. Chem. A. 2013, 1, 9484–9490.

    Article  Google Scholar 

  51. Kang, H. S. Theoretical study of binding of metal-doped graphene sheet and carbon nanotubes with dioxin. J. Am. Chem. Soc. 2005, 127, 9839–9843.

    Article  Google Scholar 

  52. Gromov, A.; Ostrovskii, D.; Lassesson, A.; Jönsson, M.; Campbell, E. E. B. Fourier transform infrared and raman spectroscopic study of chromatographically isolated Li@C60 and Li@C70. J. Phys. Chem. B 2003, 107, 11290–11301.

    Article  Google Scholar 

  53. Leroy, S.; Blanchard, F.; Dedryvère, R.; Martinez, H.; Carré, B.; Lemordant, D.; Gonbeau, D. Surface film formation on a graphite electrode in Li-ion batteries: AFM and XPS study. Surf. Interface Anal. 2005, 37, 773–781.

    Article  Google Scholar 

  54. Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 2016, 28, 1853–1858.

    Article  Google Scholar 

  55. Aurbach, D.; Markovsky, B.; Weissman, I.; Levi, E.; Ein-Eli, Y. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim. Acta 1999, 45, 67–86.

    Article  Google Scholar 

  56. Zhang, Q. F.; Wang, Y. P.; Seh, Z. W.; Fu, Z. H.; Zhang, R. F.; Cui, Y. Understanding the anchoring effect of two-dimensional layered materials for lithium–sulfur batteries. Nano Lett. 2015, 15, 3780–3786.

    Article  Google Scholar 

  57. Goldfuss, B.; von RaguéSchleyer, P.; Hampel, F. Alkali metal cation π-interactions in metalated and nonmetalated acetylenes: Π-bonded lithiums in the X-ray crystal structures of [Li−C≡C−SiMe2−C6H4−OMe]6 and [Li−O−CMe2−C≡C−H]6 and computational studies. J. Am. Chem. Soc. 1997, 119, 1072–1080.

    Article  Google Scholar 

  58. Davies, J. E.; Davies, R. P.; Dunbar, L.; Raithby, P. R.; Russell, M. G.; Snaith, R.; Warren, S.; Wheatley, A. E. H. The first lithiated phosphane oxide with Li-C bonds: Synthesis and structure of [{Ph2P(O)CHLiC(H)MeEt}4]. Angew. Chem., Int. Ed. 1997, 36, 2334–2335.

    Article  Google Scholar 

  59. Ogawa, Y.; Niu, T. C.; Wong, S. L.; Tsuji, M.; Wee, A. T. S.; Chen, W.; Ago, H. Self-assembly of polar phthalocyanine molecules on graphene grown by chemical vapor deposition. J. Phys. Chem. C 2013, 117, 21849–21855.

    Article  Google Scholar 

  60. Wang, C. L.; Xu, Y.; Fang, Y. G.; Zhou, M.; Liang, L. Y.; Singh, S.; Zhao, H. P.; Schober, A.; Lei, Y. Extended π-conjugated system for fast-charge and -discharge sodium-ion batteries. J. Am. Chem. Soc. 2015, 137, 3124–3130.

    Article  Google Scholar 

  61. Hamon, Y.; Brousse, T.; Jousse, F.; Topart, P.; Buvat, P.; Schleich, D. M. Aluminum negative electrode in lithium ion batteries. J. Power Sources 2001, 97–98, 185–187.

    Article  Google Scholar 

  62. Chen, H. Y.; Armand, M.; Courty, M.; Jiang, M.; Grey, C. P.; Dolhem, F.; Tarascon, J.-M.; Poizot, P. Lithium salt of tetrahydroxybenzoquinone: Toward the development of a sustainable Li-ion battery. J. Am. Chem. Soc. 2009, 131, 8984–8988.

    Article  Google Scholar 

  63. Jian, Z. L.; Han, W. Z.; Liang, Y. L.; Lan, Y. C.; Fang, Z.; Hu, Y.-S.; Yao, Y. Carbon-coated rhombohedral Li3V2(PO4)3 as both cathode and anode materials for lithium-ion batteries: Electrochemical performance and lithium storage mechanism. J. Mater. Chem. A 2014, 2, 20231–20236.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21231005 and 21673243) and MOE (Nos. B12015 and IRT13R30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Electronic supplementary material

12274_2017_1580_MOESM1_ESM.pdf

Nanostructured organic electrode materials grown on graphene with covalent-bond interaction for high-rate and ultra-long-life lithium-ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Wang, J., Chen, C. et al. Nanostructured organic electrode materials grown on graphene with covalent-bond interaction for high-rate and ultra-long-life lithium-ion batteries. Nano Res. 10, 4245–4255 (2017). https://doi.org/10.1007/s12274-017-1580-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1580-9

Keywords

Navigation