Skip to main content
Log in

Reduced graphene oxide decorated with Bi2O2.33 nanodots for superior lithium storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Bismuth oxides are important battery materials owing to their ability to electrochemically react and alloy with Li, which results in a high capacity level, which substantially exceeds that of graphite anodes. However, this high Li-storage capability is often compromised by the poor electrochemical cyclability and rate capability of bismuth oxides. To address these challenges, in this study, we design a hybrid architecture composed of reduced graphene oxide (rGO) nanosheets decorated with ultrafine Bi2O2.33 nanodots (denoted as Bi2O2.33/rGO), based on the selective and controlled hydrolysis of a Bi precursor on graphene oxide and subsequent crystallization via solvothermal treatment. Because of its high conductivity, large accessible area, and inherent flexibility, the Bi2O2.33/rGO hybrid exhibits stable and robust Li storage (346 mA·h·g–1 over 600 cycles at 10 C), significantly outperforming previously reported Bi-based materials. This superb performance indicates that decorating rGO nanosheets with ultrafine nanodots may introduce new possibilities for the development of stable and robust metal-oxide electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Obrovac, M. N.; Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 2014, 114, 11444–11502.

    Article  Google Scholar 

  2. Li, Y. D.; Wang, J. W.; Deng, Z. X.; Wu, Y. Y.; Sun, X. M.; Yu, D. P.; Yang, P. D.Bismuth nanotubes: A rational lowtemperature synthetic route. J. Am. Chem. Soc. 2001, 123, 9904–9905.

    Google Scholar 

  3. Park, C. M.; Yoon, S.; Lee, S. I.; Sohn, H. J. Enhanced electrochemical properties of nanostructured bismuth-based composites for rechargeable lithium batteries. J. Power Sources 2009, 186, 206–210.

    Article  Google Scholar 

  4. Jung, H.; Park, C. M.; Sohn, H. J. Bismuth sulfide and its carbon nanocomposite for rechargeable lithium-ion batteries. Electrochim. Acta 2011, 56, 2135–2139.

    Article  Google Scholar 

  5. Chen, C. J.; Hu, P.; Hu, X. L.; Mei, Y. N.; Huang, Y. H. Bismuth oxyiodide nanosheets: A novel high-energy anode material for lithium-ion batteries. Chem. Commun. 2015, 51, 2798–2801.

    Article  Google Scholar 

  6. Sun, C. F.; Hu, J. K.; Wang, P.; Cheng, X. Y.; Lee, S. B.; Wang, Y. H. Li3PO4 matrix enables a long cycle life and high energy efficiency bismuth-based battery. Nano Lett. 2016, 16, 5875–5882.

    Article  Google Scholar 

  7. Zhao, Y.; Gao, D. L.; Ni, J. F.; Gao, L. J.; Yang, J.; Li, Y. One-pot facile fabrication of carbon-coated Bi2S3 nanomeshes with efficient Li-storage capability. Nano Res. 2014, 7, 765–773.

    Article  Google Scholar 

  8. Ni, J. F.; Zhao, Y.; Liu, T. T.; Zheng, H. H.; Gao, L. J.; Yan, C. L.; Li, L. Strongly coupled Bi2S3@CNT hybrids for robust lithium storage. Adv. Energy Mater. 2014, 4, 1400798.

    Article  Google Scholar 

  9. Zhang, Z. A.; Zhou, C. K.; Huang, L.; Wang, X. W.; Qu, Y. H.; Lai, Y. Q.; Li, J. Synthesis of bismuth sulfide/reduced graphene oxide composites and their electrochemical properties for lithium ion batteries. Electrochim. Acta 2013, 114, 88–94.

    Article  Google Scholar 

  10. Zhao, Y.; Liu, T. T.; Xia, H.; Zhang, L.; Jiang, J. X.; Shen, M.; Ni, J. F.; Gao, L. J. Branch-structured Bi2S3-CNT hybrids with improved lithium storage capability. J. Mater. Chem. A 2014, 2, 13854–13858.

    Article  Google Scholar 

  11. Liu, T. T.; Zhao, Y.; Gao, L. J.; Ni, J. F.Engineering Bi2O3-Bi2S3 heterostructure for superior lithium storage. Sci. Rep. 2015, 5, 9307.

    Google Scholar 

  12. Gopalsamy, K.; Xu, Z.; Zheng, B. N.; Huang, T. Q.; Kou, L.; Zhao, X. L.; Gao, C. Bismuth oxide nanotubes–graphene fiber-based flexible supercapacitors. Nanoscale 2014, 6, 8595–8600.

    Article  Google Scholar 

  13. Xu, H. H.; Hu, X. L.; Yang, H. L.; Sun, Y. M.; Hu, C. C.; Huang, Y. H. Flexible asymmetric micro-supercapacitors based on Bi2O3 and MnO2nanoflowers: Larger areal mass promises higher energy density. Adv. Energy Mater. 2015, 5, 1401882.

    Article  Google Scholar 

  14. Zheng, F. L.; Li, G. R.; Ou, Y. N.; Wang, Z. L.; Su, C. Y.; Tong, Y. X. Synthesis of hierarchical rippled Bi2O3 nanobelts for supercapacitor applications. Chem. Commun. 2010, 46, 5021–5023.

    Article  Google Scholar 

  15. Li, Z.; Zhang, W.; Tan, Y. Y.; Hu, J. B.; He, S. Y.; Stein, A.; Tang, B. Three-dimensionally ordered macroporous ß-Bi2O3 with enhanced electrochemical performance in a Li-ion battery. Electrochim. Acta 2016, 214, 103–109.

    Article  Google Scholar 

  16. Li, Y. L.; Trujillo, M. A.; Fu, E. G.; Patterson, B.; Fei, L.; Xu, Y.; Deng, S. G.; Smirnov, S.; Luo, H. M. Bismuth oxide: A new lithium-ion battery anode. J. Mater. Chem. A 2013, 1, 12123–12127.

    Article  Google Scholar 

  17. Wang, H.; Yang, H. X.; Lu, L. Topochemical synthesis of Bi2O3 microribbons derived from a bismuth oxalate precursor as high-performance lithium-ion batteries. RSC Adv. 2014, 4, 17483–17489.

    Article  Google Scholar 

  18. Gao, D. L.; Zhang, Z. Y.; Ding, L.; Yang, J.; Li, Y. Preparation and electrocatalytic properties of triuranium octoxide supported on reduced graphene oxide. Nano Res. 2015, 8, 546–553.

    Article  Google Scholar 

  19. Wang, H. L.; Dai, H. J. Strongly coupled inorganic-nanocarbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088–3113.

    Article  Google Scholar 

  20. Chen, C. J.; Wen, Y. W.; Hu, X. L.; Ji, X. L.; Yan, M. Y.; Mai, L. Q.; Hu, P.; Shan, B.; Huang, Y. H. Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 2015, 6, 6929.

    Article  Google Scholar 

  21. Zhang, W.; Liu, Y. T.; Chen, C. J.; Li, Z.; Huang, Y. H.; Hu, X. L. Flexible and binder-free electrodes of Sb/rGO and Na3V2(PO4)3/rGO nanocomposites for sodium-ion batteries. Small 2015, 11, 3822–3829.

    Article  Google Scholar 

  22. Liang, Y. Y.; Wang, H. L.; Diao, P.; Chang, W.; Hong, G. S.; Li, Y. G.; Gong, M.; Xie, L. M.; Zhou, J. G.; Wang, J. et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 15849–15857.

    Article  Google Scholar 

  23. Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Dai, H. J. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 2013, 135, 2013–2036.

    Article  Google Scholar 

  24. Wang, H. L.; Liang, Y. Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H. S.; Dai, H. J. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res. 2011, 4, 729–736.

    Article  Google Scholar 

  25. Fang, W.; Zhang, N. Q.; Fan, L. S.; Sun, K. N. Bi2O3 nanoparticles encapsulated by three-dimensional porous nitrogen-doped graphene for high-rate lithium ion batteries. J. Power Sources 2016, 333, 30–36.

    Article  Google Scholar 

  26. Nithya, C. Bi2O3@reduced graphene oxide nanocomposite: An anode material for sodium-ion storage. ChemPlusChem 2015, 80, 1000–1006.

    Article  Google Scholar 

  27. Li, L.; Yang, Y. W.; Li, G. H.; Zhang, L. D. Conversion of a Bi nanowire array to an array of Bi-Bi2O3 core-shell nanowires and Bi2O3 nanotubes. Small 2006, 2, 548–553.

    Article  Google Scholar 

  28. Wang, J. W.; Wang, X.; Peng, Q.; Li, Y. D. Synthesis and characterization of bismuth single-crystalline nanowires and nanospheres. Inorg. Chem. 2004, 43, 7552–7556.

    Article  Google Scholar 

  29. Jiang, S. Q.; Wang, L.; Hao, W. C.; Li, W. X.; Xin, H. J.; Wang, W. W.; Wang, T. M. Visible-light photocatalytic activity of S-doped a-Bi2O3. J. Phys. Chem. C 2015, 119, 14094–14101.

    Google Scholar 

  30. Ni, J. F.; Li, Y. Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv. Energy Mater. 2016, 6, 1600278.

    Article  Google Scholar 

  31. Ni, J. F.; Zhang, L.; Fu, S. D.; Savilov, S. V.; Aldoshin, S. M.; Lu, L. A review on integrating nano-carbons into polyanion phosphates and silicates for rechargeable lithium batteries. Carbon 2015, 92, 15–25.

    Article  Google Scholar 

  32. Luo, B.; Qiu, T. F.; Ye, D. L.; Wang, L. Z.; Zhi, L. J. Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage. Nano Energy 2016, 22, 232–240.

    Article  Google Scholar 

  33. Liu, J.; Yu, L. T.; Wu, C.; Wen, Y. R.; Yin, K. B.; Chiang, F. K.; Hu, R. Z.; Liu, J. W.; Sun, L. T.; Gu, L. et al. New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk–shell spheres constituting a stable anode for high-rate Li/Na-ion batteries. Nano Lett. 2017, 17, 2034–2042.

    Article  Google Scholar 

  34. Ni, J. F.; Zhao, Y.; Li, L.; Mai, L. Q. Ultrathin MoO2 nanosheets for superior lithium storage. Nano Energy 2015, 11, 129–135.

    Article  Google Scholar 

  35. Liang, H. C.; Ni, J. F.; Li, L. Bio-inspired engineering of Bi2S3-PPy yolk-shell composite for highly durable lithium and sodium storage. Nano Energy 2017, 33, 213–220.

    Article  Google Scholar 

  36. Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P. L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

    Article  Google Scholar 

  37. Wang, Y. G.; Hong, Z. S.; Wei, M. D.; Xia, Y. Y. Layered H2Ti6O13-nanowires: A new promising pseudocapacitive material in non-aqueous electrolyte. Adv. Funct. Mater. 2012, 22, 5185–5193.

    Article  Google Scholar 

  38. Ni, J. F.; Fu, S. D.; Wu, C.; Zhao, Y.; Maier, J.; Yu, Y.; Li, L. Superior sodium storage in Na2Ti3O7 nanotube arrays through surface engineering. Adv. Energy Mater. 2016, 6, 1502568.

    Article  Google Scholar 

  39. Fu, S. D.; Ni, J. F.; Xu, Y.; Zhang, Q.; Li, L. Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for sodium-ion batteries. Nano Lett. 2016, 16, 4544–4551.

    Article  Google Scholar 

  40. Feng, N. N.; He, P.; Zhou, H. S. Critical challenges in rechargeable aprotic Li–O2 batteries. Adv. Energy Mater. 2016, 6, 1502303.

    Article  Google Scholar 

  41. Yang, S. X.; He, P.; Zhou, H. S. Exploring the electrochemical reaction mechanism of carbonate oxidation in Li-air/CO2 battery through tracing missing oxygen. Energy Environ. Sci. 2016, 9, 1650–1654.

    Article  Google Scholar 

  42. Jiang, J.; He, P.; Tong, S. F.; Zheng, M. B.; Lin, Z. X.; Zhang, X. P.; Shi, Y.; Zhou, H. S. Ruthenium functionalized graphene aerogels with hierarchical and three-dimensional porosity as a free-standing cathode for rechargeable lithiumoxygen batteries. NPG Asia Mater. 2016, 8, e239.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of the National Natural Science Foundation of China (Nos. 51672182 and 51302181), the Natural Science Foundation of Jiangsu Province (No. BK20151219), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiangfeng Ni or Yan Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, H., Liu, X., Gao, D. et al. Reduced graphene oxide decorated with Bi2O2.33 nanodots for superior lithium storage. Nano Res. 10, 3690–3697 (2017). https://doi.org/10.1007/s12274-017-1579-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1579-2

Keywords

Navigation