Skip to main content
Log in

Formation of willow leaf-like structures composed of NH2-MIL68(In) on a multifunctional multiwalled carbon nanotube backbone for enhanced photocatalytic reduction of Cr(VI)

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Efficient separation and transfer of photogenerated electron/hole as well as enhanced visible light absorption play essential roles in photocatalytic reactions. To promote the photocatalytic reduction of Cr(VI), a toxic heavy metal ion, multiwalled carbon nanotube (MWCNT) was introduced as an electron acceptor into NH2-MIL-68(In). This led to the growth of a willow leaf-like metal-organic framework (MOF) on an MWCNT backbone forming MWCNT/NH2-MIL-68(In) (PL-1), which showed a highly efficient transfer of photogenerated carriers. Moreover, MWCNT incorporation introduced more mesopores for Cr(VI) diffusion and enhanced the visible light adsorption without lowering the conduction band position. As a result, the photocatalytic kinetic constant of PL-1 was found to be almost three times higher than that of the parent NH2-MIL-68(In). Thus, growing MOFs on MWCNTs provides a facile and promising solution for effective remediation of environmental pollution by utilizing solar energy. This work provides the first example of using MWCNT/MOF composites for photocatalytic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kieber, R. J.; Willey, J. D.; Zvalaren, S. D. Chromium speciation in rainwater: Temporal variability and atmospheric deposition. Environ. Sci. Technol. 2002, 36, 5321–5327.

    Article  Google Scholar 

  2. Testa, J. J.; Grela, M. A.; Litter, M. I. Heterogeneous photocatalytic reduction of chromium(VI) over TiO2 particles in the presence of oxalate: Involvement of Cr(V) species. Environ. Sci. Technol. 2004, 38, 1589–1594.

    Article  Google Scholar 

  3. Congeevaram, S.; Dhanarani, S.; Park, J.; Dexilin, M.; Thamaraiselvi, K. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J. Hazard. Mater. 2007, 146, 270–277.

    Article  Google Scholar 

  4. Wang, X. L.; Pehkonen, S. O.; Ray, A. K. Removal of aqueous Cr(VI) by a combination of photocatalytic reduction and coprecipitation. Ind. Eng. Chem. Res. 2004, 43, 1665–1672.

    Article  Google Scholar 

  5. Rengaraj, S.; Venkataraj, S.; Yeon, J. W.; Kim, Y.; Li, X. Z.; Pang, G. K. H. Preparation, characterization and application of Nd–TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination. Appl. Catal. B: Environ. 2007, 77, 157–165.

    Article  Google Scholar 

  6. Emilio, C. A.; Magallanes, J. F.; Litter, M. I. Chemometric study on the TiO2-photocatalytic degradation of nitrilotriacetic acid. Anal. Chim. Acta 2007, 595, 89–97.

    Article  Google Scholar 

  7. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemannt, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.

    Article  Google Scholar 

  8. Gode, F.; Pehlivan, E. Removal of Cr(VI) from aqueous solution by two Lewatit-anion exchange resins. J. Hazard. Mater. 2005, 119, 175–182.

    Article  Google Scholar 

  9. Khalil, L. B.; Mourad, W. E.; Rophael, M. W. Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination. Appl. Catal. B: Environ. 1998, 17, 267–273.

    Article  Google Scholar 

  10. Yang, Y.; Wang, G. Z.; Deng, Q.; Ng, D. H.; Zhao, H. J. Microwave-assisted fabrication of nanoparticulate TiO2 microspheres for synergistic photocatalytic removal of Cr(VI) and methyl orange. ACS Appl. Mater. Interfaces 2014, 6, 3008–3015.

    Article  Google Scholar 

  11. Liu, X. J.; Pan, L. K.; Lv, T.; Zhu, G.; Sun, Z.; Sun, C. Q. Microwave-assisted synthesis of CdS-reduced graphene oxide composites for photocatalytic reduction of Cr(VI). Chem. Commun. 2011, 47, 11984–11986.

    Article  Google Scholar 

  12. Zhang, Y. C.; Li, J.; Zhang, M.; Dionysiou, D. D. Sizetunable hydrothermal synthesis of SnS2 nanocrystals with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI). Environ. Sci. Technol. 2011, 45, 9324–9331.

    Article  Google Scholar 

  13. Yang, W. L.; Zhang, L.; Hu, Y.; Zhong, Y. J.; Wu, H. B.; Lou, X. W. Microwave-assisted synthesis of porous Ag2S-Ag hybrid nanotubes with high visible-light photocatalytic activity. Angew. Chem., Int. Ed. 2012, 51, 11501–11504.

    Article  Google Scholar 

  14. Yoneyama, H.; Yamashita, Y.; Tamura, H. Heterogeneous photocatalytic reduction of dichromate on n-type semiconductor catalysts. Nature 1979, 282, 817–818.

    Article  Google Scholar 

  15. Zhang, N.; Zhang, Y. H.; Pan, X. Y.; Fu, X. Z.; Liu, S. Q.; Xu, Y. J. Assembly of CdS nanoparticles on the twodimensional graphene scaffold as visible-light-driven photocatalyst for selective organic transformation under ambient conditions. J. Phys. Chem. C 2011, 115, 23501–23511.

    Article  Google Scholar 

  16. Hu, Y.; Gao, X. H.; Yu, L.; Wang, Y. R.; Ning, J. Q.; Xu, S. J.; Lou, X. W. Carbon-coated CdSpetalous nanostructures with enhanced photostability and photocatalytic activity. Angew. Chem., Int. Ed. 2013, 52, 5636–5639.

    Article  Google Scholar 

  17. Getman, R. B.; Bae, Y. S.; Wilmer, C. E.; Snurr, R. Q. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chem. Rev. 2012, 112, 703–723.

    Article  Google Scholar 

  18. Nagarkar, S. S.; Joarder, B.; Chaudhari, A. K.; Mukherjee, S.; Ghosh, S. K. Highly selective detection of nitro explosives by a luminescent metal-organic framework. Angew. Chem., Int. Ed. 2013, 52, 2881–2885.

    Article  Google Scholar 

  19. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Fé rey, G.; Morris, R. E.; Serre, C. Metalorganic frameworks in biomedicine. Chem. Rev. 2012, 112, 1232–1268.

    Article  Google Scholar 

  20. Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Commercial metal-organic frameworks as heterogeneous catalysts. Chem. Commun. 2012, 48, 11275–11288.

    Article  Google Scholar 

  21. Wang, C. C.; Li, J. R.; Lv, X. L.; Zhang, Y. Q.; Guo, G. S. Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ. Sci. 2014, 7, 2831–2867.

    Article  Google Scholar 

  22. Alvaro, M.; Carbonell, E.; Ferrer, B.; Llabré siXamena, F. X.; Garcia, H. Semiconductor behavior of a metal-organic framework (MOF). Chem.—Eur. J. 2007, 13, 5106–5112.

    Article  Google Scholar 

  23. Shen, L. J.; Liang, S. J.; Wu, W. M.; Liang, R. W.; Wu, L. Multifunctional NH2-mediated zirconium metal-organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(VI). Dalton Trans. 2013, 42, 13649–13657.

    Article  Google Scholar 

  24. Fei, K.; Wang, L. H.; Zhu, J. F. Facile fabrication of CdSmetal- organic framework nanocomposites with enhanced visible-light photocatalytic activity for organic transformation. Nano Res. 2015, 8, 1834–1846.

    Article  Google Scholar 

  25. Shen, L. J.; Wu, W. M.; Liang, R. W.; Lin, R.; Wu, L. Highly dispersed palladium nanoparticles anchored on UiO-66(NH2) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst. Nanoscale 2013, 5, 9374–9382.

    Article  Google Scholar 

  26. Liang, R. W.; Jing, F. F.; Shen, L. J.; Qin, N.; Wu, L. M@MIL-100(Fe) (M = Au, Pd, Pt) nanocomposites fabricated by a facile photodeposition process: Efficient visible-light photocatalysts for redox reactions in water. Nano Res. 2015, 8, 3237–3249.

  27. Zeng, M.; Chai, Z. G.; Deng, X.; Li, Q.; Feng, S. Q.; Wang, J.; Xu, D. S. Core–shell CdS@ZIF-8 structures for improved selectivity in photocatalytic H2 generation from formic acid. Nano Res. 2016, 9, 2729–2734.

    Article  Google Scholar 

  28. Fu, Y. H.; Sun, D. R.; Chen, Y. J.; Huang, R. K.; Ding, Z. X.; Fu, X. Z.; Li, Z. H. An amine-functionalized titanium metalorganic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem., Int. Ed. 2012, 51, 3364–3367.

    Article  Google Scholar 

  29. Shi, L.; Wang, T.; Zhang, H. B.; Chang, K.; Meng, X. G.; Liu, H. M.; Ye, J. H. An amine-functionalized iron(III) metal-organic framework as efficient visible-light photocatalyst for Cr(VI) reduction. Adv. Sci. 2015, 2, 1500006.

    Article  Google Scholar 

  30. Liang, R. W.; Shen, L. J.; Jing, F. F.; Wu, W. M.; Qin, N.; Lin, R.; Wu, L. NH2-mediated indium metal–organic framework as a novel visible-light-driven photocatalyst for reduction of the aqueous Cr(VI). Appl. Catal. B: Environ. 2015, 162, 245–251.

    Google Scholar 

  31. Feng, W.; Feng, Y. Y.; Wu, Z. G.; Fujii, A.; Ozaki, M.; Yoshino, K. Optical and electrical characterizations of nanocomposite film of titania adsorbed onto oxidized multiwalled carbon nanotubes. J. Phys.: Condens. Matter 2005, 17, 4361–4368.

    Google Scholar 

  32. Cao, J.; Sun, J. Z.; Hong, J.; Li, H. Y.; Chen, H. Z.; Wang, M. Carbon nanotube/CdS core–shell nanowires prepared by a simple room-temperature chemical reduction method. Adv. Mater. 2004, 16, 84–87.

    Article  Google Scholar 

  33. Woan, K.; Pyrgiotakis, G.; Sigmund, W. Photocatalytic carbon-nanotube-TiO2 composites. Adv. Mater. 2009, 21, 2233–2239.

    Article  Google Scholar 

  34. Kongkanand, A.; Kamat, P. V. Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor–SWCNT suspensions. ACS Nano 2007, 1, 13–21.

    Article  Google Scholar 

  35. Dai, K.; Peng, T. Y.; Ke, D. N.; Wei, B. Q. Photocatalytic hydrogen generation using a nanocomposite of multi-walled carbon nanotubes and TiO2 nanoparticles under visible light irradiation. Nanotechnology 2009, 20, 125603.

    Article  Google Scholar 

  36. Wang, W. D.; Serp, P.; Kalck, P.; Faria, J. L. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol–gel method. J. Mol. Catal. A: Chem. 2005, 235, 194–199.

    Article  Google Scholar 

  37. Ma, L. L.; Sun, H. Z.; Zhang, Y. G.; Lin, Y. L.; Li, J. L.; Wang, E. K.; Yu, Y.; Tan, M.; Wang, J. B. Preparation, characterization and photocatalytic properties of CdS nanoparticles dotted on the surface of carbon nanotubes. Nanotechnology 2008, 19, 115709.

    Article  Google Scholar 

  38. Qadir, N. U.; Said, S. A. M.; Mansour, R. B.; Mezghani, K.; Ul Hamid, A. Synthesis, characterization, and water adsorption properties of a novel multi-walled carbon nanotube/MIL-100(Fe) composite. Dalton Trans. 2016, 45, 15621–15633.

    Article  Google Scholar 

  39. Anbia, M.; Hoseini, V. Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide. Chem. Eng. J. 2012, 191, 326–330.

    Article  Google Scholar 

  40. Goyanes, S.; Rubiolo, G. R.; Salazar, A.; Jimeno, A.; Corcuera, M. A.; Mondragon, I. Carboxylation treatment of multiwalled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy. Diamond Relat. Mater. 2007, 16, 412–417.

    Article  Google Scholar 

  41. Yan, X. B.; Tay, B. K.; Yang, Y. Dispersing and functionalizing multiwalled carbon nanotubes in TiO2 Sol. J. Phys. Chem. B 2006, 110, 25844–25849.

    Article  Google Scholar 

  42. Xu, G. H.; Zhang, Q.; Zhou, W. P.; Huang, J. Q.; Wei, F. The feasibility of producing MWCNT paper and strong MWCNT film from VACNT array.Appl. Phys. A 2008, 92, 531–539.

    Google Scholar 

  43. Zhou, Y. S.; Chen, G.; Yu, Y. G.; Zhao, L. C.; Sun, J. X.; He, F.; Dong, H. J. A new oxynitride-based solid state Z-scheme photocatalytic system for efficient Cr(VI) reduction and water oxidation. Appl. Catal. B: Environ. 2016, 183, 176–184.

    Article  Google Scholar 

  44. Zhao, K.; Zhang, X.; Zhang, L. Z. The first BiOI-based solar cells. Electrochem. Commun. 2009, 11, 612–615.

    Article  Google Scholar 

  45. Wu, L.; Xue, M.; Qiu, S. L.; Chaplais, G.; Simon Masseron, A.; Patarin, J. Amino-modified MIL-68(In) with enhanced hydrogen and carbon dioxide sorption enthalpy. Microporous Mesoporous Mater. 2012, 157, 75–81.

    Article  Google Scholar 

  46. Petit, C.; Burress, J.; Bandosz, T. J. The synthesis and characterization of copper-based metal–organic framework/ graphite oxide composites. Carbon 2011, 49, 563–572.

    Article  Google Scholar 

  47. Li, Y. H.; Xu, C. L.; Wei, B. Q.; Zhang, X. F.; Zheng, M. X.; Wu, D. H.; Ajayan, P. M. Self-organized ribbons of aligned carbon nanotubes. Chem. Mater. 2002, 14, 483–485.

    Article  Google Scholar 

  48. Yang, D. Q.; Rochette, J. F.; Sacher, E. Functionalization of multiwalled carbon nanotubes by mild aqueous sonication. J. Phys. Chem. B 2005, 109, 7788–7794.

    Article  Google Scholar 

  49. Branca, C.; Frusteri, F.; Magazù, V.; Mangione, A. Characterization of carbon nanotubes by TEM and infrared spectroscopy. J. Phys. Chem. B 2004, 108, 3469–3473.

    Article  Google Scholar 

  50. Wang, A. J.; Song, J. B.; Huang, Z. P.; Song, Y. L.; Yu, W.; Dong, H. L.; Hu, W. P.; Cifuentes, M. P.; Humphrey, M. G.; Zhang, L. et al. Multi-walled carbon nanotubes covalently functionalized by axially coordinated metal-porphyrins: Facile syntheses and temporally dependent optical performance. Nano Res. 2016, 9, 458–472.

    Article  Google Scholar 

  51. Li, X. Y.; Pi, Y. H.; Xia, Q. B.; Li, Z.; Xiao, J. TiO2 encapsulated in salicylaldehyde-NH2-MIL-101(Cr) for enhanced visible light-driven photodegradation of MB.Appl. Catal. B: Environ. 2016, 191, 192–201.

    Article  Google Scholar 

  52. Lan, A. D.; Mukasyan, A. Hydrogen storage capacity characterization of carbon nanotubes by a microgravimetrical approach. J. Phys. Chem. B 2005, 109, 16011–16016.

    Article  Google Scholar 

  53. Yang, S. J.; Cho, J. H.; Nahm, K. S.; Park, C. R. Enhanced hydrogen storage capacity of Pt-loaded CNT@MOF-5 hybrid composites. Int. J. Hydrogen Energy 2010, 35, 13062–13067.

    Article  Google Scholar 

  54. Anbia, M.; Sheykhi, S. Preparation of multi-walled carbon nanotube incorporated MIL-53-Cu composite metal-organic framework with enhanced methane sorption. J. Ind. Eng. Chem. 2013, 19, 1583–1586.

    Article  Google Scholar 

  55. Yang, Y.; Ge, L.; Rudolph, V.; Zhu, Z. H. In situ synthesis of zeoliticimidazolate frameworks/carbon nanotube composites with enhanced CO2 adsorption. Dalton Trans. 2014, 43, 7028–7036.

    Article  Google Scholar 

  56. Han, T. T.; Xiao, Y. L.; Tong, M. M.; Huang, H. L.; Liu, D. H.; Wang, L. Y.; Zhong, C. L. Synthesis of CNT@MIL-68(Al) composites with improved adsorption capacity for phenol in aqueous solution. Chem. Eng. J. 2015, 275, 134–141.

    Article  Google Scholar 

  57. Wang, H.; Yuan, X. Z.; Wu, Y.; Zeng, G. M.; Chen, X. H.; Leng, L. J.; Li, H. Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporousphotocatalyst for dyes removal. Appl. Catal. B: Environ. 2015, 174–175, 445–454.

    Article  Google Scholar 

  58. Peng, T. Y.; Zeng, P.; Ke, D. N.; Liu, X. J.; Zhang, X. H. Hydrothermal preparation of multiwalled carbon nanotubes (MWCNTs)/CdSnanocomposite and its efficient photocatalytic hydrogen production under visible light irradiation. Energy Fuels 2011, 25, 2203–2210.

    Article  Google Scholar 

  59. Li, X. Y.; Pi, Y. H.; Wu, L. Q.; Xia, Q. B.; Wu, J. L.; Li, Z.; Xiao, J. for MBdegradation. Appl. Catal. B: Environ. 2017, 202, 653–663.

    Article  Google Scholar 

  60. Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Metalorganic framework (MOF) compounds: Photocatalysts for redox reactions and solar fuel production. Angew Chem., Int. Ed. 2016, 55, 5414–5445.

    Article  Google Scholar 

  61. Yang, C.; You, X.; Cheng, J. H.; Zheng, H. D.; Chen, Y. C. A novel visible-light-driven In-based MOF/graphene oxide composite photocatalyst with enhanced photocatalytic activity toward the degradation of amoxicillin. Appl. Catal. B: Environ. 2017, 200, 673–680.

    Article  Google Scholar 

  62. Zhu, T.; Wu, H. B.; Wang, Y. B.; Xu, R.; Lou, X. W. D. Formation of 1D hierarchical structures composed of Ni3S2 nanosheets on CNTs backbone for supercapacitors and photocatalytic H2 production. Adv. Energy Mater. 2012, 2, 1497–1502.

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports received from Guangdong Natural Science Funds for Distinguished Young Scholar (No. 2016A030306031), the National Natural Science Foundation of China (No. 21576093), the Guangdong Program for Support of Top-notch Young Professionals (No. 2015TQ01N327), Pearl River and S&T Nova Program of Guangzhou (No. 201610010039), and Fundamental Research Funds for the Central Universities are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Xiao.

Electronic supplementary material

12274_2017_1565_MOESM1_ESM.pdf

Formation of willow leaf-like structures composed of NH2-MIL68(In) on a multifunctional multiwalled carbon nanotube backbone for enhanced photocatalytic reduction of Cr(VI)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pi, Y., Li, X., Xia, Q. et al. Formation of willow leaf-like structures composed of NH2-MIL68(In) on a multifunctional multiwalled carbon nanotube backbone for enhanced photocatalytic reduction of Cr(VI). Nano Res. 10, 3543–3556 (2017). https://doi.org/10.1007/s12274-017-1565-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1565-8

Keywords

Navigation