Skip to main content
Log in

InAs nanowire superconducting tunnel junctions: Quasiparticle spectroscopy, thermometry, and nanorefrigeration

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We demonstrate an original method based on controlled oxidation for creating high-quality tunnel junctions between superconducting Al reservoirs and InAs semiconductor nanowires (NWs). We show clean tunnel characteristics with a current suppression by >4 orders of magnitude for a junction bias well below the Al gap of Δ 0 ≈ 200 μeV. The experimental data agree well with the Bardeen–Cooper–Schrieffer theoretical expectations for a superconducting tunnel junction. The studied devices employ small-scale tunnel contacts functioning as thermometers as well as larger electrodes that provide proof-of-principle active cooling of the electron distribution in the NWs. A peak refrigeration of approximately δT = 10 mK is achieved at a bath temperature of T bath ≈ 250–350 mK for our prototype devices. This method introduces important perspectives for the investigation of the thermoelectric effects in semiconductor nanostructures and for nanoscale refrigeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giazotto, F.; Martínez-Pérez, M. J. The Josephson heat interferometer. Nature 2013,492, 401–405.

    Article  Google Scholar 

  2. Altimiras, C.; Le Sueur, H.; Gennser, U.; Cavanna, A.; Mailly, D.; Pierre, F. Non-equilibrium edge-channel spectroscopy in the integer quantum Hall regime. Nat. Phys. 2010,6, 34–39.

    Article  Google Scholar 

  3. Muhonen, J. T.; Meschke, M.; Pekola, J. P. Micrometre-scale refrigerators. Rep. Prog. Phys. 2012, 75, 046501.

    Article  Google Scholar 

  4. Giazotto, F.; Heikkilä, T. T.; Luukanen, A.; Savin, A. M.; Pekola, J. P. Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications. Rev. Mod. Phys. 2006, 78, 217–274.

    Article  Google Scholar 

  5. Fornieri, A.; Giazotto, F. Towards phase-coherent caloritronics in superconducting quantum circuits. arXiv.org, arXiv:1610.01013, 2016.

  6. Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, Z. F.; Fleurial, J.-P.; Gogna, P. New directions for low-dimensional thermoelectric materials. Adv. Mater. 2007, 19, 1043–1053.

    Article  Google Scholar 

  7. Wu, P. M.; Gooth, J.; Zianni, X.; Svensson, S. F.; Gluschke, J. G.; Dick, K. A.; Thelander, C.; Nielsch, K.; Linke, H. Large thermoelectric power factor enhancement observed in InAs nanowires. Nano Lett. 2013, 13, 4080–4086.

    Article  Google Scholar 

  8. Vineis, C. J.; Shakouri, A.; Majumdar, A.; Kanatzidis, M. G. Nanostructured thermoelectrics: Big efficiency gains from small features. Adv. Mater. 2010, 22, 3970–3980.

    Article  Google Scholar 

  9. Li, D. Y.; Wu, Y. Y.; Kim, P.; Shi, L.; Yang, P. D.; Majumdar, A. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 2003, 83, 2934–2936.

    Article  Google Scholar 

  10. Yazji, S.; Hoffman, E. A.; Ercolani, D.; Rossella, F.; Pitanti, A.; Cavalli, A.; Roddaro, S.; Abstreiter, G.; Sorba, L.; Zardo, I. Complete thermoelectric benchmarking of individual InSb nanowires using combined micro-Raman and electric transport analysis. Nano Res. 2015, 8, 4048–4060.

    Article  Google Scholar 

  11. Roddaro, S.; Ercolani, D.; Safeen, M. A.; Suomalainen, S.; Rossella, F.; Giazotto, F.; Sorba, L.; Beltram, F. Giant thermovoltage in single InAs nanowire field-effect transistors. Nano Lett. 2013, 13, 3638–3642.

    Article  Google Scholar 

  12. Tikhonov, E. S.; Shovkun, D. V.; Ercolani, D.; Rossella, F.; Rocci, M.; Sorba, L.; Roddaro, S.; Khrapai, V. S. Local noise in a diffusive conductor. Sci. Rep. 2016, 6, 30621.

    Article  Google Scholar 

  13. Mourik, V.; Zuo, K.; Frolov, S. M.; Plissard, S. R.; Bakkers, E. P. A. M.; Kouwenhoven, L. P. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 2012, 336, 1003–1007.

    Article  Google Scholar 

  14. Plissard, S. R.; van Weperen, I.; Car, D.; Verheijen, M. A.; Immink, G. W. G.; Kammhuber, J.; Cornelissen, L. J.; Szombati, D. B.; Geresdi, A.; Frolov, S. M. et al. Formation and electronic properties of InSb nanocrosses. Nat. Nanotechnol. 2013, 8, 859–864.

    Article  Google Scholar 

  15. Chang, W.; Manucharyan, V. E.; Jespersen, T. S.; Nygård, J.; Marcus, C. M. Tunneling spectroscopy of quasiparticle bound states in a spinful Josephson junction. Phys. Rev. Lett. 2013, 110, 217005.

    Article  Google Scholar 

  16. Larsen, T. W.; Petersson, K. D.; Kummeth, F.; Jespersen, T. S.; Krogstrup, P.; Nygård, J.; Marcus, C. M. Semiconductornanowire- based superconducting qubit. Phys. Rev. Lett. 2015, 115, 127001.

    Article  Google Scholar 

  17. Miller, N. A.; O’Neil, G. C.; Beall, J. A.; Hilton, G. C.; Irwin, K. D.; Schmidt, D. R.; Vale, R. L.; Ullom, J. N. High resolution X-ray transition-edge sensor cooled by tunnel junction refrigerators. Appl. Phys. Lett. 2008, 92, 163501.

    Article  Google Scholar 

  18. Giazotto, F.; Heikkilä, T. T.; Pepe, G. P.; Helistö, P.; Luukanen, A.; Pekola, J. P. Ultrasensitive proximity Josephson sensor with kinetic inductance readout. Appl. Phys. Lett. 2008, 92, 162507.

    Article  Google Scholar 

  19. Martínez-Pérez, M. J.; Giazotto, F. A quantum diffractor for thermal flux. Nat. Commun. 2014, 5, 3579.

    Google Scholar 

  20. Fornieri, A.; Blanc, C.; Bosisio, R.; D’Ambrosio, S.; Giazotto, F. Nanoscale phase engineering of thermal transport with a Josephson heat modulator. Nat. Nanotechnol. 2016, 11, 258–262.

    Article  Google Scholar 

  21. Martínez-Pérez, M. J.; Fornieri, A.; Giazotto, F. Rectification of electronic heat current by a hybrid thermal diode. Nat. Nanotechnol. 2015, 10, 303–307.

    Article  Google Scholar 

  22. Leijnse, M. Thermoelectric signatures of a Majorana bound state coupled to a quantum dot. New J. Phys. 2014, 16, 015029.

    Article  Google Scholar 

  23. López, R.; Lee, M.; Serra, L.; Lim, J. S. Thermoelectrical detection of Majorana states. Phys. Rev. B 2014, 89, 205418.

    Article  Google Scholar 

  24. Pekola, J. P.; Heikkilä, T. T.; Savin, A. M.; Flyktman, J. T., Giazotto, F.; Hekking, F. Hekking, F. W. J. Limitations in cooling electrons using normal-metal-superconductor tunnel junctions. Phys. Rev. Lett. 2004, 92, 056804.

    Article  Google Scholar 

  25. Quaranta, O.; Spathis, P.; Beltram, F.; Giazotto, F. Cooling electrons from 1 to 0.4 K with V-based nanorefrigerators. Appl. Phys. Lett. 2011, 98, 032501.

    Article  Google Scholar 

  26. Nevala, M. R.; Chaudhuri, S.; Halkosaari, J.; Karvonen, J. T.; Maasilta, I. J. Sub-micron normal-metal/insulator/superconductor tunnel junction thermometer and cooler using Nb. Appl. Phys. Lett. 2012, 101, 112601.

    Article  Google Scholar 

  27. Gunnarsson, D.; Richardson-Bullock, J. S.; Prest, M. J.; Nguyen, H. Q.; Timofeev, A. V.; Shah, V. A.; Whall, T. E.; Parker, E. H. C.; Leadley, D. R.; Myronov, M. et al. Interfacial engineering of semiconductor-superconductor junctions for high performance micro-coolers. Sci. Rep. 2015, 5, 17398.

    Article  Google Scholar 

  28. Svensson, S. F.; Hoffmann, E. A.; Nakpathomkun, N.; Wu, P. M.; Xu, H. Q.; Nilsson, H. A.; Sánchez, D.; Kashcheyevs, V.; Linke, H. Nonlinear thermovoltage and thermocurrent in quantum dots. New J. Phys. 2013, 15, 105011.

    Article  Google Scholar 

  29. Doh, Y.-J.; van Dam, J. A.; Roest, A. L.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; De Franceschi, S. Tunable supercurrent through semiconductor nanowires. Science 2005, 309, 272–275.

    Article  Google Scholar 

  30. Roddaro, S.; Pescaglini, A.; Ercolani, D.; Sorba, L.; Giazotto, F.; Beltram, F. Hot-electron effects in InAs nanowire Josephson junctions. Nano Res. 2011, 4, 259–265.

    Article  Google Scholar 

  31. Björk, M.; Ohlsson, B. J.; Sass, T.; Persson, A. I.; Thelander, C.; Magnusson, M. H.; Deppert, K.; Wallenberg, L. R.; Samuelson, L. One-dimensional steeplechase for electrons realized. Nano Lett. 2002, 2, 87–89.

    Article  Google Scholar 

  32. Roddaro, S.; Pescaglini, A.; Ercolani, D.; Sorba, L.; Beltram, F. Manipulation of electron orbitals in hard-wall InAs/InP nanowire quantum dots. Nano Lett. 2011, 11, 1695–1699.

    Article  Google Scholar 

  33. Romeo, L.; Roddaro, S.; Pitanti, A.; Ercolani, D.; Sorba, L.; Beltram, F. Electrostatic spin control in InAs/InP nanowire quantum dots. Nano Lett. 2012, 12, 4490–4494.

    Article  Google Scholar 

  34. Rossella, F.; Bertoni, A.; Ercolani, D.; Rontani, M.; Sorba, L.; Beltram, F.; Roddaro, S. Nanoscale spin rectifiers controlled by the Stark effect. Nat. Nanotechnol. 2014, 9, 997–1001.

    Article  Google Scholar 

  35. Viti, L.; Vitiello, M. S.; Ercolani, D.; Sorba, L.; Tredicucci, A. Se-doping dependence of the transport properties in CBE-grown InAs nanowire field effect transistors. Nanoscale Res. Lett. 2012, 7, 159.

    Article  Google Scholar 

  36. Suyatin, D. B.; Thelander, C.; Björk, M. T.; Maximov, I.; Samuelson, L. Sulfur passivation for ohmic contact formation to InAs nanowires. Nanotechnology 2007, 18, 105307.

    Article  Google Scholar 

  37. Ruggiero, S. T.; Williams, A.; Rippard, W. H.; Clark, A.; Deiker, S. W.; Vale, L. R.; Ullom, J. N. Dilute Al-Mn alloys for low-temperature device applications. J. Low Temp. Phys. 2004, 134, 973–984.

    Article  Google Scholar 

  38. Tinkham, M. Introduction to Superconductivity; McGraw Hill: New York, 1996.

    Google Scholar 

  39. Dynes, R. C.; Narayanamurti, V.; Garno J. P. Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor. Phys. Rev. Lett. 1978, 41, 1509–1512.

    Article  Google Scholar 

Download references

Acknowledgements

S. R., V. Z., L. S., D. E., and M. R. acknowledge the financial support by CNR, through the bilateral projects with RFBR (Russia), and by Scuola Normale Superiore. The work of E. S. is funded by the Marie Curie Individual Fellowship MSCAIFEF-ST No. 660532-SuperMag. F. G, N. L., and A. F. acknowledge the financial support of the European Research Council under the European Union’s Seventh Framework Program (No. FP7/2007-2013)/ERC Grant agreement (No. 615187-COMANCHE) and MIURFIRB2013–Project Coca (No. RBFR1379UX). I. M. acknowledges funding by the Academy of Finland grant No. 298667.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefano Roddaro or Francesco Giazotto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastomäki, J., Roddaro, S., Rocci, M. et al. InAs nanowire superconducting tunnel junctions: Quasiparticle spectroscopy, thermometry, and nanorefrigeration. Nano Res. 10, 3468–3475 (2017). https://doi.org/10.1007/s12274-017-1558-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1558-7

Keywords

Navigation