Skip to main content
Log in

Highly uniform and nonlinear selection device based on trapezoidal band structure for high density nano-crossbar memory array

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Crossbar array provides a cost-effective approach for achieving high-density integration of two-terminal functional devices. However, the “sneaking current problem”, which can lead to read failure, is a severe challenge in crossbar arrays. To inhibit the sneaking current from unselected cells, the integration of individual selection devices is necessary. In this work, we report a novel TaO x -based selector exhibiting a trapezoidal band structure formed by tuning the concentration of defects in the oxide. Salient features such as a high current density (1 MA·cm–2), high selectivity (5 × 104), low off-state current (~10 pA), robust endurance (>1010), self-compliance, and excellent uniformity were successfully achieved. The integrated one-selector one-resistor (1S1R) device exhibits high nonlinearity in the low resistance state (LRS), which is quite effective in solving the sneaking current issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833–840.

    Article  Google Scholar 

  2. Yu, S. M.; Chen, H. Y.; Gao, B.; Kang, J. F.; Wong, H. S. P. HfO x -based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture. ACS Nano 2013, 7, 2320–2325.

    Article  Google Scholar 

  3. Yang, J. J.; Pickett, M. D.; Li, X. M.; Ohlberg, D. A. A.; Stewart, D. R.; Williams, R. S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 2008, 3, 429–433.

    Article  Google Scholar 

  4. Xia, Q. F.; Yang, J. J.; Wu, W.; Li, X. M.; Williams, R. S. Self-aligned memristor cross-point arrays fabricated with one nanoimprint lithography step. Nano Lett. 2010, 10, 2909–2914.

    Article  Google Scholar 

  5. Tian, X. Z.; Wang, L. F.; Wei, J. K.; Yang, S. Z.; Wang, W. L.; Xu, Z.; Bai, X. D. Filament growth dynamics in solid electrolyte-based resistive memories revealed by in situ TEM. Nano Res. 2014, 7, 1065–1072.

    Article  Google Scholar 

  6. Sun, Y. H.; Yan, X. Q.; Zheng, X.; Liu, Y. C.; Shen, Y. W.; Zhang, Y. Influence of carrier concentration on the resistive switching characteristics of a ZnO-based memristor. Nano Res. 2016, 9, 1116–1124.

    Article  Google Scholar 

  7. Wu, Y.; Wei, Y.; Huang, Y.; Cao, F.; Yu, D. J.; Li, X. M.; Zeng, H. B. Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Res. 2017, 10, 1584–1594.

    Article  Google Scholar 

  8. Wong, H. S. P.; Salahuddin, S. Memory leads the way to better computing. Nat. Nanotechnol. 2015, 10, 191–194.

    Article  Google Scholar 

  9. Xia, Q. F.; Robinett, W.; Cumbie, M. W.; Banerjee, N.; Cardinali, T. J.; Yang, J. J.; Wu, W.; Li, X. M.; Tong, W. M.; Strukov, D. B. et al. Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 2009, 9, 3640–3645.

    Article  Google Scholar 

  10. Cassinerio, M.; Ciocchini, N.; Ielmini, D. Logic computation in phase change materials by threshold and memory switching. Adv. Mater. 2013, 25, 5975–5980.

    Article  Google Scholar 

  11. Huang, P.; Kang, J.; Zhao, Y.; Chen, S.; Han, R.; Zhou, Z.; Chen, Z.; Ma, W.; Li, M.; Liu, L.; Liu, X. Reconfigurable nonvolatile logic operations in resistance switching crossbar array for large-scale circuits. Adv. Mater. 2016, 28, 9758–9764.

    Article  Google Scholar 

  12. Adam, G. C.; Hoskins, B. D.; Prezioso, M.; Strukov, D. B. Optimized stateful material implication logic for threedimensional data manipulation. Nano Res. 2016, 9, 3914–3923.

    Article  Google Scholar 

  13. Lee, T. H.; Loke, D.; Huang, K. J.; Wang, W. J.; Elliott, S. R. Tailoring transient-amorphous states: Towards fast and power-efficient phase-change memory and neuromorphic computing. Adv. Mater. 2014, 26, 7493–7498.

    Article  Google Scholar 

  14. Yu, S. M.; Gao, B.; Fang, Z.; Yu, H. Y.; Kang, J. F.; Wong, H. S. P. A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation. Adv. Mater. 2013, 25, 1774–1779.

    Article  Google Scholar 

  15. Gao, B.; Bi, Y. J.; Chen, H. Y.; Liu, R.; Huang, P.; Chen, B.; Liu, L. F.; Liu, X. Y.; Yu, S. M.; Wong, H. S. P. et al. Ultra-low-energy three-dimensional oxide-based electronic synapses for implementation of robust high-accuracy neuromorphic computation systems. ACS Nano 2014, 8, 6998–7004.

    Article  Google Scholar 

  16. Wang, Z. R.; Joshi, S.; Savel’ev, S. E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, J. P.; Li, Z. Y. et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017, 16, 101–108.

    Article  Google Scholar 

  17. Eigler, D. M.; Lutz, C. P.; Rudge, W. E. An atomic switch realized with the scanning tunnelling microscope. Nature 1991, 352, 600–603.

    Article  Google Scholar 

  18. Krishnan, K.; Tsuruoka, T.; Mannequin, C.; Aono, M. Mechanism for conducting filament growth in self-assembled polymer thin films for redox-based atomic switches. Adv. Mater. 2016, 28, 640–648.

    Article  Google Scholar 

  19. Simpson, R. E.; Fons, P.; Kolobov, A. V.; Fukaya, T.; Krbal, M.; Yagi, T.; Tominaga, J. Interfacial phase-change memory. Nat. Nanotechnol. 2011, 6, 501–505.

    Article  Google Scholar 

  20. Hegedüs, J.; Elliott, S. R. Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. Nat. Mater. 2008, 7, 399–405.

    Article  Google Scholar 

  21. Sankey, J. C.; Cui, Y.-T.; Sun, J. Z.; Slonczewski, J. C.; Buhrman, R. A.; Ralph, D. C. Measurement of the spintransfer- torque vector in magnetic tunnel junctions. Nat. Phys. 2008, 4, 67–71.

    Article  Google Scholar 

  22. Liu, L. Q.; Pai, C.-F.; Li, Y.; Tseng, H. W.; Ralph, D. C.; Buhrman, R. A. Spin-torque switching with the giant spin hall effect of tantalum. Science 2012, 336, 555–558.

    Article  Google Scholar 

  23. Xiong, F.; Liao, A. D.; Estrada, D.; Pop, E. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 2011, 332, 568–570.

    Article  Google Scholar 

  24. Bandaru, P. R.; Daraio, C.; Jin, S.; Rao, A. M. Novel electrical switching behaviour and logic in carbon nanotube Y-junctions. Nat. Mater. 2005, 4, 663–666.

    Article  Google Scholar 

  25. Jiang, A. Q.; Wang, C.; Jin, K. J.; Liu, X. B.; Scott, J. F.; Hwang, C. S.; Tang, T. A.; Lu, H. B.; Yang, G. Z. A resistive memory in semiconducting BiFeO3 thin-film capacitors. Adv. Mater. 2011, 23, 1277–1281.

    Google Scholar 

  26. Luo, Q.; Xu, X. X.; Liu, H. T.; Lv, H. B.; Gong, T. C.; Long, S. B.; Liu, Q.; Sun, H. T.; Banerjee, W.; Li, L. et al. Cu BEOL compatible selector with high selectivity (>107), extremely low off-current (∼pA) and high endurance (>1010). In 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, 2015, pp 10.4.1–10.4.4.

    Google Scholar 

  27. Gopalakrishnan, K.; Shenoy, R. S.; Rettner, C. T.; Virwani, K.; Bethune, D. S.; Shelby, R. M.; Burr, G. W.; Kellock, A.; King, R. S.; Nguyen, K. et al. Highly-scalable novel access device based on mixed ionic electronic conduction (MIEC) materials for high density phase change memory (PCM) arrays. In 2010 Symposium on VLSI Technology, Honolulu, 2010, pp 205–206.

    Google Scholar 

  28. Son, M.; Lee, J.; Park, J.; Shin, J.; Choi, G.; Jung, S.; Lee, W.; Kim, S.; Park, S.; Hwang, H. Excellent selector characteristics of nanoscale VO2 for high-density bipolar ReRAM applications. IEEE Electron Device Lett. 2011, 32, 1579–1581.

    Article  Google Scholar 

  29. Kim, S.; Liu, X. J.; Park, J.; Jung, S.; Lee, W.; Woo, J.; Shin, J.; Choi, G.; Cho, C.; Park, S. et al. Ultrathin (<10 nm) Nb2O5/NbO2 hybrid memory with both memory and selector characteristics for high density 3D vertically stackable RRAM applications. In 2012 Symposium on VLSI Technology (VLSIT), Honolulu, HI, 2012, pp 155–156.

    Google Scholar 

  30. Huang, J.-J.; Tseng, Y.-M.; Hsu, C.-W.; Hou, T.-H. Bipolar Ni/TiO2/Ni selector for 1S1R crossbar array applications. IEEE Electron Device Lett. 2011, 32, 1427–1429.

    Article  Google Scholar 

  31. Lee, W.; Park, J.; Kim, S.; Woo, J.; Shin, J.; Choi, G.; Park, S.; Lee, D.; Cha, E.; Lee, B. H. et al. High current density and nonlinearity combination of selection device based on TaO x /TiO2/TaO x structure for one selector–one resistor arrays. ACS Nano 2012, 6, 8166–8172.

    Article  Google Scholar 

  32. Likharev, K. K. Layered tunnel barriers for nonvolatile memory devices. Appl. Phys. Lett. 1998, 73, 2137–2139.

    Article  Google Scholar 

  33. Allyn, C. L.; Gossard, A. C.; Wiegmann, W. New rectifying semiconductor structure by molecular beam epitaxy. Appl. Phys. Lett. 1980, 36, 373–376.

    Article  Google Scholar 

  34. Malik, R. J.; Aucoin, T. R.; Ross, R. L.; Board, K.; Wood, C. E. C.; Eastman, L. F. Planar-doped barriers in GaAs by molecular beam epitaxy. Electron. Lett. 1980, 16, 836–838.

    Article  Google Scholar 

  35. Simmons, J. G. Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J. Appl. Phys. 1963, 34, 2581–2590.

    Article  Google Scholar 

  36. Simmons, J. G. Potential barriers and emission-limited current flow between closely spaced parallel metal electrodes. J. Appl. Phys. 1964, 35, 2472–2481.

    Article  Google Scholar 

  37. Xu, X. X.; Lv, H. B.; Li, Y. X.; Liu, H. T.; Wang, M.; Liu, Q.; Long, S. B.; Liu, M. Degradation of gate voltage controlled multilevel storage in one transistor one resistor electrochemical metallization cell. IEEE Electron Device Lett. 2015, 36, 555–557.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2016YFA0203800 and 2016YFA0201803) and the National Natural Science Foundation of China (No. 61522408).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hangbing Lv or Ming Liu.

Electronic supplementary material

12274_2017_1542_MOESM1_ESM.pdf

Highly uniform and nonlinear selection device based on trapezoidal band structure for high density nano-crossbar memory array

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Q., Xu, X., Lv, H. et al. Highly uniform and nonlinear selection device based on trapezoidal band structure for high density nano-crossbar memory array. Nano Res. 10, 3295–3302 (2017). https://doi.org/10.1007/s12274-017-1542-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1542-2

Keywords

Navigation