Skip to main content
Log in

Co-vacancy-rich Co1–x S nanosheets anchored on rGO for high-efficiency oxygen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Developing cost-efficient electrocatalysts for oxygen evolution is vital for the viability of H2 energy generated via electrolytic water. Engineering favorable defects on the electrocatalysts to provide accessible active sites can boost the sluggish reaction thermodynamics or kinetics. Herein, Co1–x S nanosheets were designed and grown on reduced graphene oxide (rGO) by controlling the successive two-step hydrothermal reaction. A belt-like cobalt-based precursor was first formed with the assistance of ammonia and rGO, which were then sulfurized into Co1–x S by L-cysteine at a higher hydrothermal temperature. Because of the non-stoichiometric defects and ultrathin sheet-like structure, additional cobalt vacancies (V’Co) were formed/exposed on the catalyst surface, which expedited the charge diffusion and increased the electroactive surface in contact with the electrolyte. The resulting Co1–x S/rGO hybrids exhibited an overpotential as low as 310 mV at 10 mA·cm–2 in an alkaline electrolyte for the oxygen evolution reaction (OER). Density functional theory calculations indicated that the V’Co on the Co1–x S/rGO hybrid functioned as catalytic sites for enhanced OER. They also reduced the energy barrier for the transformation of intermediate oxygenated species, promoting the OER thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kibsgaard, J.; Tsai, C.; Chan, K.; Benck, J. D.; Norskov, J. K.; Abild-Pedersen, F.; Jaramillo, T. F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 2015, 8, 3022–3029.

    Article  Google Scholar 

  2. Xie, G. C.; Zhang, K.; Guo, B. D.; Liu, Q.; Fang, L.; Gong, J. R. Graphene-based materials for hydrogen generation from light-driven water splitting. Adv. Mater. 2013, 25, 3820–3839.

    Article  Google Scholar 

  3. Li, J. Y.; Wang, G. X.; Wang, J.; Miao, S.; Wei, M. M.; Yang, F.; Yu, L.; Bao, X. H. Architecture of PtFe/C catalyst with high activity and durability for oxygen reduction reaction. Nano Res. 2014, 7, 1519–1527.

    Article  Google Scholar 

  4. Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555–1614.

    Article  Google Scholar 

  5. Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

    Article  Google Scholar 

  6. Liao, L.; Wang, S. N.; Xiao, J. J.; Bian, X. J.; Zhang, Y. H.; Scanlon, M. D.; Hu, X. L.; Tang, Y.; Liu, B. H.; Girault, H. H. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 387–392.

    Google Scholar 

  7. Wang, Y.; Huang, W.; Si, C. H.; Zhang, J.; Yan, X. J.; Jin, C. H.; Ding, Y.; Zhang, Z. H. Self-supporting nanoporous gold-palladium overlayer bifunctional catalysts toward oxygen reduction and evolution reactions. Nano Res. 2016, 9, 3781–3794.

    Article  Google Scholar 

  8. Elbert, K.; Hu, J.; Ma, Z.; Zhang, Y.; Chen, G. Y.; An, W.; Liu, P.; Isaacs, H. S.; Adzic, R. R.; Wang, J. X. Elucidating hydrogen oxidation/evolution kinetics in base and acid by enhanced activities at the optimized Pt shell thickness on the Ru core. ACS Catal. 2015, 5, 6764–6772.

    Article  Google Scholar 

  9. Danilovic, N.; Subbaraman, R.; Chang, K. C.; Chang, S. H.; Kang, Y. J.; Snyder, J.; Paulikas, A. P.; Strmcnik, D.; Kim, Y. T.; Myers, D. et al. Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments. Angew. Chem., Int. Ed. 2014, 53, 14016–14021.

    Article  Google Scholar 

  10. Meng, Y. T.; Song, W. Q.; Huang, H.; Ren, Z.; Chen, S. Y.; Suib, S. L. Structure-property relationship of bifunctional MnO2 nanostructures: Highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J. Am. Chem. Soc. 2014, 136, 11452–11464.

    Article  Google Scholar 

  11. Liu, X. Y.; Wang, X.; Yuan, X. T.; Dong, W. J.; Huang, F. Q. Rational composition and structural design of in situ grown nickel-based electrocatalysts for efficient water electrolysis. J. Mater. Chem. A 2016, 4, 167–172.

    Article  Google Scholar 

  12. Maiyalagan, T.; Jarvis, K. A.; Therese, S.; Ferreira, P. J.; Manthiram, A. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 2014, 5, 3949.

    Article  Google Scholar 

  13. Wang, H. T.; Lee, H. W.; Deng, Y.; Lu, Z. Y.; Hsu, P. C.; Liu, Y. Y.; Lin, D. C.; Cui, Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 2015, 6, 7261.

    Article  Google Scholar 

  14. Stern, L. A.; Feng, L. G.; Song, F.; Hu, X. L. Ni2P as a Janus catalyst for water splitting: The oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 2015, 8, 2347–2351.

    Article  Google Scholar 

  15. Ryu, J.; Jung, N.; Jang, J. H.; Kim, H. J.; Yoo, S. J. In situ transformation of hydrogen-evolving CoP nanoparticles: Toward efficient oxygen evolution catalysts bearing dispersed morphologies with Co-oxo/hydroxo molecular units. ACS Catal. 2015, 5, 4066–4074.

    Article  Google Scholar 

  16. Yang, Y.; Fei, H. L.; Ruan, G. D.; Tour, J. M. Porous cobalt-based thin film as a bifunctional catalyst for hydrogen generation and oxygen generation. Adv. Mater. 2015, 27, 3175–3180.

    Article  Google Scholar 

  17. Ma, W.; Ma, R. Z.; Wang, C. X.; Liang, J. B.; Liu, X. H.; Zhou, K. C.; Sasaki, T. A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water. ACS Nano 2015, 9, 1977–1984.

    Article  Google Scholar 

  18. Diaz-Morales, O.; Ferrus-Suspedra, D.; Koper, M. T. M. The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem. Sci. 2016, 7, 2639–2645.

    Article  Google Scholar 

  19. Li, S. W.; Wang, Y. C.; Peng, S. J.; Zhang, L. J.; Al-Enizi, A. M.; Zhang, H.; Sun, X. H.; Zheng, G. F. Co-Ni-based nanotubes/nanosheets as efficient water splitting electrocatalysts. Adv. Energy Mater. 2016, 6, 1501661.

    Article  Google Scholar 

  20. Cherevko, S.; Geiger, S.; Kasian, O.; Kulyk, N.; Grote, J. P.; Savan, A.; Shrestha, B. R.; Merzlikin, S.; Breitbach, B.; Ludwig, A. et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Catal. Today 2016, 262, 170–180.

    Article  Google Scholar 

  21. Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martinez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.

    Article  Google Scholar 

  22. Pfeifer, V.; Jones, T. E.; Wrabetz, S.; Massué, C.; Vélez, J. J. V.; Arrigo, R.; Scherzer, M.; Piccinin, S.; Hävecker, M.; Knop-Gericke, A. et al. Reactive oxygen species in iridiumbased OER catalysts. Chem. Sci. 2016, 7, 6791–6795.

    Article  Google Scholar 

  23. Du, S. C.; Ren, Z. Y.; Zhang, J.; Wu, J.; Xi, W.; Zhu, J. Q.; Fu, H. G. Co3O4 nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting. Chem. Commun. 2015, 51, 8066–8069.

    Article  Google Scholar 

  24. Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015, 137, 2688–2694.

    Article  Google Scholar 

  25. Yu, X. X.; Hua, T. Y.; Liu, X.; Yan, Z. P.; Xu, P.; Du, P. W. Nickel-based thin film on multiwalled carbon nanotubes as an efficient bifunctional electrocatalyst for water splitting. ACS Appl. Mater. Interfaces 2014, 6, 15395–15402.

    Article  Google Scholar 

  26. Lu, Z. Y.; Qian, L.; Xu, W. W.; Tian, Y.; Jiang, M.; Li, Y. P.; Sun, X. M.; Duan, X. Dehydrated layered double hydroxides: Alcohothermal synthesis and oxygen evolution activity. Nano Res. 2016, 9, 3152–3161.

    Article  Google Scholar 

  27. Vaidhyanathan, B.; Rao, K. J. Synthesis of Ti, Ga, and V nitrides: Microwave-assisted carbothermal reduction and nitridation. Chem. Mater. 1997, 9, 1196–1200.

    Article  Google Scholar 

  28. Cobo, S.; Heidkamp, J.; Jacques, P. A.; Fize, J.; Fourmond, V.; Guetaz, L.; Jousselme, B.; Ivanova, V.; Dau, H.; Palacin, S. et al. A Janus cobalt-based catalytic material for electrosplitting of water. Nat. Mater. 2012, 11, 802–807.

    Article  Google Scholar 

  29. Shi, S. P.; Gao, D. Q.; Xia, B. R.; Liu, P. T.; Xue, D. S. Enhanced hydrogen evolution catalysis in MoS2 nanosheets by incorporation of a metal phase. J. Mater. Chem. A 2015, 3, 24414–24421.

    Article  Google Scholar 

  30. Li, Q.; Guo, B. D.; Yu, J. G.; Ran, J. R.; Zhang, B. H.; Yan, H. J.; Gong, J. R. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 2011, 133, 10878–10884.

    Article  Google Scholar 

  31. Zhang, J.; Liu, S. H.; Liang, H. W.; Dong, R. H.; Feng, X. L. Hierarchical transition-metal dichalcogenide nanosheets for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2015, 27, 7426–7431.

    Article  Google Scholar 

  32. Chen, C.; Yang, X. D.; Zhou, Z. Y.; Lai, Y. J.; Rauf, M.; Wang, Y.; Pan, J.; Zhuang, L.; Wang, Q.; Wang, Y. C. et al. Aminothiazole-derived N, S, Fe-doped graphene nanosheets as high performance electrocatalysts for oxygen reduction. Chem. Commun. 2015, 51, 17092–17095.

    Article  Google Scholar 

  33. Gao, M. R.; Cao, X.; Gao, Q.; Xu, Y. F.; Zheng, Y. R.; Jiang, J.; Yu, S. H. Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation. ACS Nano 2014, 8, 3970–3978.

    Article  Google Scholar 

  34. Campos, C. E. M.; de Lima, J. C.; Grandi, T. A.; Machado, K. D.; Pizani, P. S. Structural studies of cobalt selenides prepared by mechanical alloying. Phys. B: Condens. Matter 2002, 324, 409–418.

    Article  Google Scholar 

  35. Cabán-Acevedo, M.; Stone, M. L.; Schmidt, J. R.; Thomas, J. G.; Ding, Q.; Chang, H. C.; Tsai, M. L.; He, J. H.; Jin, S. Efficient hydrogen evolution catalysis using ternary pyritetype cobalt phosphosulphide. Nat. Mater. 2015, 14, 1245–1251.

    Article  Google Scholar 

  36. Ling, T.; Yan, D. Y.; Jiao, Y.; Wang, H.; Zheng, Y.; Zheng, X. L.; Mao, J.; Du, X.-W.; Hu, Z. P.; Jaroniec, M. et al. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis. Nat. Commun. 2016, 7, 12876.

    Article  Google Scholar 

  37. Gao, R.; Li, Z. Y.; Zhang, X. L.; Zhang, J. C.; Hu, Z. B.; Liu, X. F. Carbon-dotted defective CoO with oxygen vacancies: A synergetic design of bifunctional cathode catalyst for Li-O2 batteries. ACS Catal. 2016, 6, 400–406.

    Article  Google Scholar 

  38. Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

    Article  Google Scholar 

  39. Yin, H. J.; Zhao, S. L.; Zhao, K.; Muqsit, A.; Tang, H. J.; Chang, L.; Zhao, H. J.; Gao, Y.; Tang, Z. Y. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 2015, 6, 6430.

    Article  Google Scholar 

  40. Cheng, F. Y.; Zhang, T. R.; Zhang, Y.; Du, J.; Han, X. P.; Chen, J. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angew. Chem., Int. Ed. 2013, 52, 2474–2477.

    Article  Google Scholar 

  41. Liu, Y. W.; Cheng, H.; Lyu, M. J.; Fan, S. J.; Liu, Q. H.; Zhang, W. S.; Zhi, Y. D.; Wang, C. M.; Xiao, C.; Wei, S. Q. et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 2014, 136, 15670–15675.

    Article  Google Scholar 

  42. Liu, X. W.; Zhou, K. B.; Wang, L.; Wang, B. Y.; Li, Y. D. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 2009, 131, 3140–3141.

    Article  Google Scholar 

  43. Liu, G.; Yang, H. G.; Wang, X. W.; Cheng, L. N.; Pan, J.; Lu, G. Q.; Cheng, H. M. Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. J. Am. Chem. Soc. 2009, 131, 12868–12869.

    Article  Google Scholar 

  44. Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

    Article  Google Scholar 

  45. Kuang, Y.; Feng, G.; Li, P. S.; Bi, Y. M.; Li, Y. P.; Sun, X. M. Single-crystalline ultrathin nickel nanosheets array from in situ topotactic reduction for active and stable electrocatalysis. Angew. Chem., Int. Ed. 2016, 55, 693–697.

    Article  Google Scholar 

  46. Fan, X. J.; Zhou, H. Q.; Guo, X. WC nanocrystals grown on vertically aligned carbon nanotubes: An efficient and stable electrocatalyst for hydrogen evolution reaction. ACS Nano 2015, 9, 5125–5134.

    Article  Google Scholar 

  47. Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

    Article  Google Scholar 

  48. Jiang, B. J.; Tang, Y. Q.; Qu, Y.; Wang, J. Q.; Xie, Y.; Tian, C. G.; Zhou, W.; Fu, H. G. Thin carbon layer coated Ti3+-TiO2 nanocrystallites for visible-light driven photocatalysis. Nanoscale 2015, 7, 5035–5045.

    Article  Google Scholar 

  49. Abidat, I.; Bouchenafa-Saib, N.; Habrioux, A.; Comminges, C.; Canaff, C.; Rousseau, J.; Napporn, T. W.; Dambournet, D.; Borkiewicz, O.; Kokoh, K. B. Electrochemically induced surface modifications of mesoporous spinels (Co3O4–δ, MnCo2O4–δ, NiCo2O4–δ) as the origin of the OER activity and stability in alkaline medium. J. Mater. Chem. A 2015, 3, 17433–17444.

    Article  Google Scholar 

  50. Hummers, W. S., Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

    Article  Google Scholar 

  51. Wu, J.; Ren, Z. Y.; Du, S. C.; Kong, L. J.; Liu, B. W.; Xi, W.; Zhu, J. Q.; Fu, H. G. A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Res. 2016, 9, 713–725.

    Article  Google Scholar 

  52. Jiang, N.; You, B.; Sheng, M. L.; Sun, Y. J. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem., Int. Ed. 2015, 54, 6251–6254.

    Article  Google Scholar 

  53. Wu, J. J.; Liu, M. J.; Chatterjee, K.; Hackenberg, K. P.; Shen, J. F.; Zou, X. L.; Yan, Y.; Gu, J.; Yang, Y. C.; Lou, J. et al. Exfoliated 2D transition metal disulfides for enhanced electrocatalysis of oxygen evolution reaction in acidic medium. Adv. Mater. Interfaces 2016, 3, 1500669.

    Article  Google Scholar 

  54. Zhang, G.; Wang, G. C.; Liu, Y.; Liu, H. J.; Qu, J. H.; Li, J. H. Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. J. Am. Chem. Soc. 2016, 138, 14686–14693.

    Article  Google Scholar 

  55. Zhao, W. W.; Zhang, C.; Geng, F. Y.; Zhuo, S. F.; Zhang, B. Nanoporous hollow transition metal chalcogenide nanosheets synthesized via the anion-exchange reaction of metal hydroxides with chalcogenide ions. ACS Nano 2014, 8, 10909–10919.

    Article  Google Scholar 

  56. Dou, S.; Tao, L.; Huo, J.; Wang, S. Y.; Dai, L. M. Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis. Energy Environ. Sci. 2016, 9, 1320–1326.

    Article  Google Scholar 

  57. Zhang, J.; Yu, J. G.; Jaroniec, M.; Gong, J. R. Noble metalfree reduced graphene oxide-ZnxCd1-xS nanocomposite with enhanced solar photocatalytic H2-production performance. Nano Lett. 2012, 12, 4584–4589.

    Article  Google Scholar 

  58. Miao, J. W.; Xiao, F.-X.; Yang, H. B.; Khoo, S. Y.; Chen, J. Z.; Fan, Z. X.; Hsu, Y.-Y.; Chen, H. M.; Zhang, H.; Liu, B. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte. Sci. Adv. 2015, 1, e1500259.

    Article  Google Scholar 

  59. Lapides, A. M.; Sherman, B. D.; Brennaman, M. K.; Dares, C. J.; Skinner, K. R.; Templeton, J. L.; Meyer, T. J. Synthesis, characterization, and water oxidation by a molecular chromophore-catalyst assembly prepared by atomic layer deposition. The “mummy” strategy. Chem. Sci. 2015, 6, 6398–6406.

    Google Scholar 

  60. Shen, M. X.; Ruan, C. P.; Chen, Y.; Jiang, C. H.; Ai, K. L.; Lu, L. H. Covalent entrapment of cobalt-iron sulfides in N-doped mesoporous carbon: Extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions. ACS Appl. Mater. Interfaces 2015, 7, 1207–1218.

    Article  Google Scholar 

  61. Ma, T. Y.; Zheng, Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Mesoporous MnCo2O4 with abundant oxygen vacancy defects as high-performance oxygen reduction catalysts. J. Mater. Chem. A 2014, 2, 8676–8682.

    Article  Google Scholar 

  62. Liu, X.; Liu, W.; Ko, M.; Park, M.; Kim, M. G.; Oh, P.; Chae, S.; Park, S.; Casimir, A.; Wu, G. et al. Metal (Ni, Co)-metal oxides/graphene nanocomposites as multifunctional electrocatalysts. Adv. Funct. Mater. 2015, 25, 5799–5808.

    Article  Google Scholar 

  63. Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 9351–9355.

    Article  Google Scholar 

  64. Xie, G. C.; Zhang, K.; Fang, H.; Guo, B. D.; Wang, R. Z.; Yan, H.; Fang, L.; Gong, J. R. A photoelectrochemical investigation on the synergetic effect between CdS and reduced graphene oxide for solar-energy conversion. Chem.—Asian J. 2013, 8, 2395–2400.

    Article  Google Scholar 

  65. Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 2015, 348, 1230–1234.

    Article  Google Scholar 

  66. Zhou, W.; Sun, F. F.; Pan, K.; Tian, G. H.; Jiang, B. J.; Ren, Z. Y.; Tian, C. G.; Fu, H. G. Well-ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: Preparation, characterization, and photocatalytic performance. Adv. Funct. Mater. 2011, 21, 1922–1930.

    Article  Google Scholar 

  67. Zhang, X. D.; Liu, Q. H.; Meng, L. J.; Wang, H.; Bi, W. T.; Peng, Y. H.; Yao, T.; Wei, S. Q.; Xie, Y. In-plane coassembly route to atomically thick inorganic-organic hybrid nanosheets. ACS Nano 2013, 7, 1682–1688.

    Article  Google Scholar 

  68. Hammer, B.; Nørskov, J. K. Why gold is the noblest of all the metals. Nature 1995, 376, 238–240.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of this research by the National Natural Science Foundation of China (Nos. 21631004, 21371053, and 21573062), the Project for Foshan Innovation Group (No. 2014IT100062), Application Technology Research and Development Projects in Harbin (No. 2013AE4BW051), the International Science & Technology Cooperation Program of China (No. 2014DFR41110), the Foundation of Heilongjiang Province of China (No. QC2013C009) and the supporting plan for Excellent Youth of Heilongjiang University (No. JCL201501).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyu Ren or Honggang Fu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Ren, Z., Du, S. et al. Co-vacancy-rich Co1–x S nanosheets anchored on rGO for high-efficiency oxygen evolution. Nano Res. 10, 1819–1831 (2017). https://doi.org/10.1007/s12274-017-1511-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1511-9

Keywords

Navigation