Skip to main content
Log in

Versatile synthesis of yolk/shell hybrid nanocrystals via ion-exchange reactions for novel metal/semiconductor and semiconductor/semiconductor conformations

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Yolk/shell (Y–S) hybrid nanoarchitectures, owing to the interior voids created for individualized catalyst applications, have emerged as new candidates for effectively isolating catalytic species. However, the well-defined hollow interiors with flexible core and shell compositions—such as noble-metal cores, metal-oxide cores, and widespread semiconductor shells—and a flexible anisotropic shape are far from the requirements. In particular, the introduction of catalytic noble metals or metal-oxide nanocrystals (NCs) with isotropic or anisotropic shapes into various hollow semiconductor structures with well-defined morphologies has been rarely reported but is urgently needed. Herein, we propose a strategy involving the careful sulfuration of as-prepared cavity-free core/shell NCs or metal-oxide NCs followed by phosphine-initialized cation-exchange reactions for preparing metal@semiconductor and metal oxide@semiconductor (II-VI) Y–S NCs. The geometry, size, and conformations of the core and shell are fully and independently considered. New and unprecendented metal@semiconductor and metal oxide@semiconductor (II-VI) Y–S NCs are prepared via widespread phosphine-initialized cation-exchange reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, J.; Hernandez, P.; Lee, J.; Govorov, A. O.; Kotov, N. A. Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection. Nat. Mater. 2007, 6, 291–295.

    Article  Google Scholar 

  2. Costi, R.; Saunders, A. E.; Banin, U. Colloidal hybrid nanostructures: A new type of functional materials. Angew. Chem., Int. Ed. 2010, 49, 4878–4897.

    Article  Google Scholar 

  3. Buck, M. R.; Bondi, J. F.; Schaak, R. E. A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles. Nat. Chem. 2012, 4, 37–44.

    Article  Google Scholar 

  4. Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921.

    Article  Google Scholar 

  5. Su, B.; Guo, W.; Jiang, L. Learning from nature: Binary cooperative complementary nanomaterials. Small 2015, 11, 1072–1096.

    Article  Google Scholar 

  6. Liu, M. J.; Jiang, L. Dialectics of nature in materials science: Binary cooperative complementary materials. Sci. China Mater. 2016, 59, 239–246.

    Article  Google Scholar 

  7. Zhang, J. T.; Tang, Y.; Lee, K.; Ouyang, M. Tailoring light–matter–spin interactions in colloidal hetero-nanostructures. Nature 2010, 466, 91–95.

    Article  Google Scholar 

  8. Lee, J.; Yang, J.; Kwon, S. G.; Hyeon, T. Nonclassical nucleation and growth of inorganic nanoparticles. Nat. Rev. Mater. 2016, 1, 16034.

    Article  Google Scholar 

  9. Yang, P. D.; Tarascon, J. M. Towards systems materials engineering. Nat. Mater. 2012, 11, 560–563.

    Article  Google Scholar 

  10. Mark, A. G.; Gibbs, J. G.; Lee, T. C.; Fischer, P. Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 2013, 12, 802–807.

    Article  Google Scholar 

  11. Boyjoo, Y.; Wang, M. W.; Pareek, V. K.; Liu, J.; Jaroniec, M. Synthesis and applications of porous non-silica metal oxide submicrospheres. Chem. Soc. Rev. 2016, 45, 6013–6047.

    Article  Google Scholar 

  12. Zhang, L. Q.; Qian, K.; Wang, X. P.; Zhang, F.; Shi, X.; Jiang, Y. J.; Liu, S. M.; Jaroniec, M.; Liu, J. Yolk–shellstructured aluminum phenylphosphonate microspheres with anionic core and cationic shell. Adv. Sci. 2016, 3, 1500363.

    Article  Google Scholar 

  13. Zhao, Q.; Ji, M. W.; Qian, H. M.; Dai, B. S.; Weng, L.; Gui, J.; Zhang, J. T.; Ouyang, M.; Zhu, H. S. Controlling structural symmetry of a hybrid nanostructure and its effect on efficient photocatalytic hydrogen evolution. Adv. Mater. 2014, 26, 1387–1392.

    Article  Google Scholar 

  14. Prieto, G.; Tüysü z, H.; Duyckaerts, N.; Knossalla, J.; Wang, G. H.; Schü th, F. Hollow nano- and microstructures as catalysts. Chem. Rev. 2016, 116, 14056–14119.

    Article  Google Scholar 

  15. Priebe, M.; Fromm, K. M. Nanorattles or yolk–shell nanoparticles—What are they, how are they made, and what are they good for? Chem.—Eur. J. 2015, 21, 3854–3874.

    Article  Google Scholar 

  16. Qi, J.; Lai, X. Y.; Wang, J. Y.; Tang, H. J.; Ren, H.; Yang, Y.; Jin, Q.; Zhang, L. J.; Yu, R. B.; Ma, G. H. et al. Multi-shelled hollow micro-/nanostructures. Chem. Soc. Rev. 2015, 44, 6749–6773.

    Article  Google Scholar 

  17. Li, G. D.; Tang, Z. Y. Noble metal nanoparticle@metal oxide core/yolk–shell nanostructures as catalysts: Recent progress and perspective. Nanoscale 2014, 6, 3995–4011.

    Article  Google Scholar 

  18. Yang, Y.; Liu, X.; Li, X. B.; Zhao, J.; Bai, S. Y.; Liu, J.; Yang, Q. H. A yolk–shell nanoreactor with a basic core and an acidic shell for cascade reactions. Angew. Chem., Int. Ed. 2012, 51, 9164–9168.

    Article  Google Scholar 

  19. Liu, J.; Yang, H. Q.; Kleitz, F.; Chen, Z. G.; Yang, T. Y.; Strounina, E.; Lu, G. Q.; Qiao, S. Z. Yolk–shell hybrid materials with a periodic mesoporous organosilica shell: Ideal nanoreactors for selective alcohol oxidation. Adv. Funct. Mater. 2012, 22, 591–599.

    Article  Google Scholar 

  20. Zhang, Q.; Ge, J. P.; Goebl, J.; Hu, Y. X.; Lu, Z. D.; Yin, Y. D. Rattle-type silica colloidal particles prepared by a surface-protected etching process. Nano Res. 2009, 2, 583–591.

    Article  Google Scholar 

  21. Liang, X. L.; Li, J.; Joo, J. B.; Gutiérrez, A.; Tillekaratne, A.; Lee, I.; Yin, Y. D.; Zaera, F. Diffusion through the shells of yolk–shell and core–shell nanostructures in the liquid phase. Angew. Chem., Int. Ed. 2012, 124, 8158–8160.

    Article  Google Scholar 

  22. Lee, I.; Joo, J. B.; Yin, Y. D.; Zaera, F. A yolk@shell nanoarchitecture for Au/TiO2 catalysts. Angew. Chem., Int. Ed. 2011, 50, 10208–10211.

    Article  Google Scholar 

  23. Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W.; Xing, X. R.; Lu, G. Q. Yolk/shell nanoparticles: New platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Commum. 2011, 47, 12578–12591.

    Article  Google Scholar 

  24. Kim, J. G.; Kim, S. M.; Lee, I. S. Mechanistic insight into the yolk@shell transformation of MnO@Silica nanospheres incorporating Ni2+ ions toward a colloidal hollow nanoreactor. Small 2015, 11, 1930–1938.

    Article  Google Scholar 

  25. Wang, J. Y.; Tang, H. J.; Ren, H.; Yu, R. B.; Qi, J.; Mao, D.; Zhao, H. J.; Wang, D. pH-regulated synthesis of multi-shelled manganese oxide hollow microspheres as supercapacitor electrodes using carbonaceous microspheres as templates. Adv. Sci. 2014, 1, 1400011.

    Article  Google Scholar 

  26. Cho, J. S.; Kang, Y. C. Nanofibers comprising yolk–shell Sn@void@SnO/SnO2 and hollow SnO/SnO2 and SnO2 nanospheres via the Kirkendall diffusion effect and their electrochemical properties. Small 2015, 11, 4673–4681.

    Article  Google Scholar 

  27. Meir, N.; Plante, I. J.; Flomin, K.; Chockler, E.; Moshofsky, B.; Diab, M.; Volokh, M.; Mokari, T. Studying the chemical, optical and catalytic properties of noble metal (Pt, Pd, Ag, Au)–Cu2O core–shell nanostructures grown via a general approach. J. Mater. Chem. A 2013, 1, 1763–1769.

    Article  Google Scholar 

  28. Li, A.; Zhang, P.; Chang, X. X.; Cai, W. T.; Wang, T.; Gong, J. L. Gold nanorod@TiO2 yolk–shell nanostructures for visible-light-driven photocatalytic oxidation of benzyl alcohol. Small 2015, 11, 1892–1899.

    Article  Google Scholar 

  29. Kuo, C. H.; Chu, Y. T.; Song, Y. F.; Huang, M. H. Cu2O nanocrystal-templated growth of Cu2S nanocages with encapsulated Au nanoparticles and in-situ transmission X-ray microscopy study. Adv. Funct. Mater. 2011, 21, 792–797.

    Article  Google Scholar 

  30. Guan, B. Y.; Wang, T.; Zeng, S. J.; Wang, X.; An, D.; Wang, D. M.; Cao, Y.; Ma, D. X.; Liu, Y. L.; Huo, Q. S. A versatile cooperative template-directed coating method to synthesize hollow and yolk–shell mesoporous zirconium titanium oxide nanospheres as catalytic reactors. Nano Res. 2014, 7, 246–262.

    Article  Google Scholar 

  31. Li, W.; Deng, Y. H.; Wu, Z. X.; Qian, X. F.; Yang, J. P.; Wang, Y.; Gu, D.; Zhang, F.; Tu, B.; Zhao, D. Y. Hydrothermal etching assisted crystallization: A facile route to functional yolk–shell titanate microspheres with ultrathin nanosheetsassembled double shells. J. Am. Chem. Soc. 2011, 133, 15830–15833.

    Article  Google Scholar 

  32. Pang, M. L.; Wang, Q. X.; Zeng, H. C. Self-generated etchant for synthetic sculpturing of Cu2O-Au, Cu2O@Au, Au/Cu2O, and 3D-Au nanostructures. Chem.—Eur. J. 2012, 18, 14605–14609.

    Article  Google Scholar 

  33. Jiang, L.; Qu, Y.; Ren, Z. Y.; Yu, P.; Zhao, D. D.; Zhou, W.; Wang, L.; Fu, H. G. In situ carbon-coated yolk–shell V2O3 microspheres for lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 1595–1601.

    Article  Google Scholar 

  34. Yang, T. Y.; Liu, J.; Zheng Y.; Monteiro, M. J.; Qiao, S. Z. Facile fabrication of core–shell-structured Ag@Carbon and mesoporous yolk–shell-structured Ag@carbon@silica by an extended stöber method. Chem.—Eur. J. 2013, 19, 6942–6945.

    Article  Google Scholar 

  35. Skrabalak, S. E.; Chen, J. Y.; Sun, Y. G.; Lu, X. M.; Au, L.; Cobley, C. M.; Xia, Y. N. Gold nanocages: Synthesis, properties, and applications. Acc. Chem. Res. 2008, 41, 1587–1595.

    Article  Google Scholar 

  36. An, K.; Kwon, S. G.; Park, M.; Na, H. B.; Baik, S. I.; Yu, J. H.; Kim, D.; Son, J. S.; Kim, Y. W.; Song, I. C. et al. Synthesis of uniform hollow oxide nanoparticles through nanoscale acid etching. Nano Lett. 2008, 8, 4252–4258.

    Article  Google Scholar 

  37. Wang, L. Z.; Tang, F. Q.; Ozawa, K.; Chen, Z. G.; Mukherj, A.; Zhu, Y. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. A general single-source route for the preparation of hollow nanoporous metal oxide structures. Angew. Chem., Int. Ed. 2009, 48, 7048–7051.

    Google Scholar 

  38. Guria, A. K.; Prusty, G.; Patra, B. K.; Pradhan, N. Dopantcontrolled selenization in Pd nanocrystals: The triggered Kirkendall effect. J. Am. Chem. Soc. 2015, 137, 5123–5129.

    Article  Google Scholar 

  39. Jiao, S. H.; Xu, L. F.; Jiang, K.; Xu, D. S. Well-defined non-spherical copper sulfide mesocages with single-crystalline shells by shape-controlled Cu2O crystal templating. Adv. Mater. 2006, 18, 1174–1177.

    Article  Google Scholar 

  40. Wu, H. L.; Sato, R.; Yamaguchi, A.; Kimura, M.; Haruta, M.; Kurata, H.; Teranishi, T. Formation of pseudomorphic nanocages from Cu2O nanocrystals through anion exchange reactions. Science 2016, 351, 1306–1310.

    Article  Google Scholar 

  41. Wang, Z. Y.; Luan, D. Y.; Boey, F. Y. C.; Lou, X. W. Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. J. Am. Chem. Soc. 2011, 133, 4738–4741.

    Article  Google Scholar 

  42. Powell, A. E.; Hodges, J. M.; Schaak, R. E. Preserving both anion and cation sublattice features during a nanocrystal cation-exchange reaction: Synthesis of metastable wurtzitetype CoS and MnS. J. Am. Chem. Soc. 2016, 138, 471–474.

    Article  Google Scholar 

  43. Gui, J.; Ji, M. W.; Liu, J. J.; Xu, M.; Zhang, J. T.; Zhu, H. S. Phosphine-initiated cation exchange for precisely tailoring composition and properties of semiconductor nanostructures: Old concept, new applications. Angew. Chem., Int. Ed. 2015, 54, 3683–3687.

    Article  Google Scholar 

  44. Kostopoulou, A.; Thétiot, F.; Tsiaoussis, I.; Androulidaki, M.; Cozzoli, P. D.; Lappas, A. Colloidal anisotropic ZnO-Fe@FexOy nanoarchitectures with interface-mediated exchange-bias and band-edge ultraviolet fluorescence. Chem. Mater. 2012, 24, 2722–2732.

    Article  Google Scholar 

  45. Li, Z.; Foley, J. J., IV; Peng, S.; Sun, C. J.; Ren, Y.; Wiederrecht, G. P.; Gray, S. K.; Sun, Y. G. Reversible modulation of surface plasmons in gold nanoparticles enabled by surface redox chemistry. Angew. Chem., Int. Ed. 2015, 54, 8948–8951.

    Article  Google Scholar 

  46. Zhao, W. W.; Zhang, C.; Geng, F. Y.; Zhuo, S. F.; Zhang, B. Nanoporous hollow transition metal chalcogenide nanosheets synthesized via the anion-exchange reaction of metal hydroxides with chalcogenide ions. ACS Nano 2014, 8, 10909–10919.

    Article  Google Scholar 

  47. Park, J.; Zheng, H. M.; Jun, Y. W.; Alivisatos, A. P. Heteroepitaxial anion exchange yields single-crystalline hollow nanoparticles. J. Am. Chem. Soc. 2009, 131, 13943–13945.

    Article  Google Scholar 

  48. Hodges, J. M.; Kletetschka, K.; Fenton, J. L.; Read, C. G.; Schaak, R. E. Sequential anion and cation exchange reactions for complete material transformations of nanoparticles with morphological retention. Angew. Chem., Int. Ed. 2015, 127, 8793–8796.

    Article  Google Scholar 

  49. Pan, X. L.; Fan, Z. L.; Chen, W.; Ding, Y. J.; Luo, H. Y.; Bao, X. H. Enhanced ethanol production inside carbonnanotube reactors containing catalytic particles. Nat. Mater. 2007, 6, 507–511.

    Article  Google Scholar 

  50. Zhang, L.; Blom, D. A.; Wang, H. Au–Cu2O core–shell nanoparticles: A hybrid metal-semiconductor heteronanostructure with geometrically tunable optical properties. Chem. Mater. 2011, 23, 4587–4598.

    Article  Google Scholar 

  51. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.

    Article  Google Scholar 

  52. Nai, J. W.; Tian, Y.; Guan, X.; Guo, L. Pearson’s principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages. J. Am. Chem. Soc. 2013, 135, 16082–16091.

    Article  Google Scholar 

  53. Zhang, J. T.; Liu, J. F.; Peng, Q.; Wang, X.; Li, Y. D. Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors. Chem. Mater. 2006, 18, 867–871.

    Article  Google Scholar 

  54. Bai, S.; Wang, L. L.; Li, Z. Q.; Xiong, Y. J. Facet-engineered surface and interface design of photocatalytic materials. Adv. Sci. 2017, 4, 1600216.

    Article  Google Scholar 

  55. Zhang, D. F.; Zhang, H.; Guo, L.; Zheng, K.; Han, X. D.; Zhang, Z. Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. J. Mater. Chem. 2009, 19, 5220–5225.

    Article  Google Scholar 

  56. Macdonald, J. E.; Sadan, M. B.; Houben, L.; Popov, I.; Banin, U. Hybrid nanoscale inorganic cages. Nat. Mater. 2010, 9, 810–815.

    Article  Google Scholar 

  57. Franzman, M. A.; Schlenker, C. W.; Thompson, M. E.; Brutchey, R. L. Solution-phase synthesis of SnSe nanocrystals for use in solar cells. J. Am. Chem. Soc. 2010, 132, 4060–4061.

    Article  Google Scholar 

  58. Jayalakshmi, M.; Mohan Rao, M.; Choudary, B. M. Identifying nano SnS as a new electrode material for electrochemical capacitors in aqueous solutions. Electrochem. Commun. 2004, 6, 1119–1122.

    Article  Google Scholar 

  59. Choi, S. H.; Kang, Y. C. Synergetic effect of yolk–shell structure and uniform mixing of SnS–MoS2 nanocrystals for improved Na-ion storage capabilities. ACS Appl. Mater. Interfaces 2015, 7, 24694–24702.

    Article  Google Scholar 

  60. Li, L.; Chen, Z.; Hu, Y.; Wang, X. W.; Zhang, T.; Chen, W.; Wang, Q. B. Single-layer single-crystalline SnSe nanosheets. J. Am. Chem. Soc. 2013, 135, 1213–1216.

    Article  Google Scholar 

  61. Patra, B. K.; Guria, A. K.; Dutta, A.; Shit, A.; Pradhan, N. Au-SnS hetero nanostructures: Size of Au matters. Chem. Mater. 2014, 26, 7194–7200.

    Article  Google Scholar 

  62. Biacchi, A. J.; Vaughn, D. D., II; Schaak, R. E. Synthesis and crystallographic analysis of shape-controlled SnS nanocrystal photocatalysts: Evidence for a pseudotetragonal structural modification. J. Am. Chem. Soc. 2013, 135, 11634–11644.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21322105, 91323301, 51631001, 51372025, and 51501010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiatao Zhang.

Electronic supplementary material

12274_2017_1508_MOESM1_ESM.pdf

Versatile synthesis of yolk/shell hybrid nanocrystals via ion-exchange reactions for novel metal/semiconductor and semiconductor/semiconductor conformations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, M., Li, X., Wang, H. et al. Versatile synthesis of yolk/shell hybrid nanocrystals via ion-exchange reactions for novel metal/semiconductor and semiconductor/semiconductor conformations. Nano Res. 10, 2977–2987 (2017). https://doi.org/10.1007/s12274-017-1508-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1508-4

Keywords

Navigation