Skip to main content
Log in

Engineering a tubular mesoporous silica nanocontainer with well-preserved clay shell from natural halloysite

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The in situ synthesis of mesoporous nanotubes from natural minerals remains a great challenge. Herein, we report the successful synthesis of mesoporous silica nanotubes (MNTs) with a varying inner-shell thickness and a preserved clay outer shell from natural-halloysite nanotubes (HNTs). After the enlargement of the lumen diameter of the tubular aluminosilicate clay by acid leaching, uniform mesopores were introduced by a modified pseudomorphic transformation approach, while the clay outer shell was well-preserved. Using density functional theory calculations, the atomic structure evolution and the energetics during Al leaching and Si–OH condensation were studied in detail. After the leaching of Al ions from the HNTs, local structural changes from Al(Oh) to Al(V) at a medium leaching level and to Al(Td) at a high leaching level were confirmed. The calculated hydroxylation energy of two kinds of silica components in the acid-leached HNTs (the distorted two-dimensional silica source in the inner shell and the intact aluminosilicate structure in the outer shell) was 0.5 eV lower or 1.0 eV higher than that of bulk silica, which clarifies the different behavior of the silica components in the hydrothermal process. The successful synthesis of reactive MNTs from HNTs introduces a new strategy for the synthesis of mesoporous nanocontainers with a special morphology using natural minerals. In particular, MNT samples with numerous reactive Al(V) species and a specific surface area up to 583 m2/g (increased by a factor of 10) are promising drug-loading nanocontainers and nanoreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, K.; Xu, L. L.; Jiang, J. G.; Calin, N.; Lam, K. F.; Zhang, S. J.; Wu, H. H.; Wu, G. D.; Albela, B.; Bonneviot, L. et al. Facile large-scale synthesis of monodisperse mesoporous silica nanospheres with tunable pore structure. J. Am. Chem. Soc. 2013, 135, 2427–2430.

    Article  Google Scholar 

  2. Yang, J. P.; Shen, D. K.; Wei, Y.; Li, W.; Zhang, F.; Kong, B.; Zhang, S. H.; Teng, W.; Fan, J. W.; Zhang, W. X. et al. Monodisperse core–shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels. Nano Res. 2015, 8, 2503–2514.

    Article  Google Scholar 

  3. Lee, I.; Zhang, Q.; Ge, J. P.; Yin, Y. D.; Zaera, F. Encapsulation of supported Pt nanoparticles with mesoporous silica for increased catalyst stability. Nano Res. 2011, 4, 115–123.

    Article  Google Scholar 

  4. Mao, C. B.; Wang, F. K.; Cao, B. R. Controlling nanostructures of mesoporous silica fibers by supramolecular assembly of genetically modifiable bacteriophages. Angew. Chem., Int. Ed. 2012, 51, 6411–6415.

    Article  Google Scholar 

  5. Obare, S. O.; Jana, N. R.; Murphy, C. J. Preparation of polystyrene- and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes. Nano Lett. 2001, 1, 601–603.

    Article  Google Scholar 

  6. Ma, Z.; Dai, S. Development of novel supported gold catalysts: A materials perspective. Nano Res. 2011, 4, 3–32.

    Article  Google Scholar 

  7. Kang, D. Y.; Brunelli, N. A.; Yucelen, G. I.; Venkatasubramanian, A.; Zang, J.; Leisen, J.; Hesketh, P. J.; Jones, C. W.; Nair, S. Direct synthesis of single-walled aminoaluminosilicate nanotubes with enhanced molecular adsorption selectivity. Nat. Commun. 2014, 5, 3342.

    Google Scholar 

  8. Martin, C. R.; Kohli, P. The emerging field of nanotube biotechnology. Nat. Rev. Drug Discov. 2003, 2, 29–37.

    Article  Google Scholar 

  9. Vallet-Regí, M.; Balas, F.; Arcos, D. Mesoporous materials for drug delivery. Angew. Chem., Int. Ed. 2007, 46, 7548–7558.

    Article  Google Scholar 

  10. Yu, J.; Yang, C.; Li, J.; Ding, Y. C.; Zhang, L.; Yousaf, M. Z.; Lin, J.; Pang, R.; Wei, L. B.; Xu, L. L. et al. Multifunctional Fe5C2 nanoparticles: A targeted theranostic platform for magnetic resonance imaging and photoacoustic tomography-guided photothermal therapy. Adv. Mater. 2014, 26, 4114–4120.

    Article  Google Scholar 

  11. Molina, E.; Warnant, J.; Mathonnat, M.; Bathfield, M.; In, M.; Laurencin, D.; Jéroîme, C.; Lacroix-Desmazes, P.; Marcotte, N.; Gé rardin, C. Drug-polymer electrostatic complexes as new structuring agents for the formation of drug-loaded ordered mesoporous silica. Langmuir 2015, 31, 12839–12844.

    Article  Google Scholar 

  12. Zhou, X. J.; Moran-Mirabal, J. M.; Craighead, H. G.; McEuen, P. L. Supported lipid bilayer/carbon nanotube hybrids. Nat. Nanotechnol. 2007, 2, 185–190.

    Article  Google Scholar 

  13. Charlier, J. C.; Blase, X.; Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 2007, 79, 677–732.

    Article  Google Scholar 

  14. Han, W. Q.; Yu, H. G.; Zhi, C. Y.; Wang, J. B.; Liu, Z. X.; Sekiguchi, T.; Bando, Y. Isotope effect on band gap and radiative transitions properties of boron nitride nanotubes. Nano Lett. 2008, 8, 491–494.

    Article  Google Scholar 

  15. Deng, S. Z.; Fan, H. M.; Wang, M.; Zheng, M. R.; Yi, J. B.; Wu, R. Q.; Tan, H. R.; Sow, C. H.; Ding, J.; Feng, Y. P. et al. Thiol-capped ZnO nanowire/nanotube arrays with tunable magnetic properties at room temperature. ACS Nano 2010, 4, 495–505.

    Article  Google Scholar 

  16. Joussein, E.; Petit, S.; Churchman, J.; Theng, B.; Righi, D.; Delvaux, B. Halloysite clay minerals—A review. Clay Miner. 2005, 40, 383–426.

    Article  Google Scholar 

  17. Lvov, Y.; Wang, W. C.; Zhang, L. Q.; Fakhrullin, R. Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv. Mater. 2016, 28, 1227–1250.

    Article  Google Scholar 

  18. Wang, J. H.; Zhang, X.; Zhang, B.; Zhao, Y. F.; Zhai, R.; Liu, J. D.; Chen, R. F. Rapid adsorption of Cr(VI) on modified halloysite nanotubes. Desalination 2010, 259, 22–28.

    Article  Google Scholar 

  19. Luo, P.; Zhang, J. S.; Zhang, B.; Wang, J. H.; Zhao, Y. F.; Liu, J. D. Preparation and characterization of silane coupling agent modified halloysite for Cr(VI) removal. Ind. Eng. Chem. Res. 2011, 50, 10246–10252.

    Article  Google Scholar 

  20. Abdullayev, E.; Joshi, A.; Wei, W. B.; Zhao, Y. F.; Lvov, Y. Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano 2012, 6, 7216–7226.

    Article  Google Scholar 

  21. Yuan, P.; Southon, P. D.; Liu, Z. W.; Kepert, C. J. Organosilane functionalization of halloysite nanotubes for enhanced loading and controlled release. Nanotechnology 2012, 23, 375705.

    Article  Google Scholar 

  22. Lvov, Y. M.; Shchukin, D. G.; Mö hwald, H.; Price, R. R. Halloysite clay nanotubes for controlled release of protective agents. ACS Nano 2008, 2, 814–820.

    Article  Google Scholar 

  23. Abdullayev, E.; Price, R.; Shchukin, D.; Lvov, Y. Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole. ACS Appl. Mater. Interfaces 2009, 1, 1437–1443.

    Article  Google Scholar 

  24. Shchukin, D. G.; Sukhorukov, G. B.; Price, R. R.; Lvov, Y. M. Halloysite nanotubes as biomimetic nanoreactors. Small 2005, 1, 510–513.

    Article  Google Scholar 

  25. Du, M. L.; Guo, B. C.; Jia, D. M. Newly emerging applications of halloysite nanotubes: A review. Polym. Int. 2010, 59, 574–582.

    Google Scholar 

  26. Yah, W. O.; Takahara, A.; Lvov, Y. M. Selective modification of halloysite lumen with octadecylphosphonic acid: New inorganic tubular micelle. J. Am. Chem. Soc. 2012, 134, 1853–1859.

    Article  Google Scholar 

  27. Zhai, R.; Zhang, B.; Liu, L.; Xie, Y. D.; Zhang, H. Q.; Liu, J. D. Immobilization of enzyme biocatalyst on natural halloysite nanotubes. Catal. Commun. 2010, 12, 259–263.

    Article  Google Scholar 

  28. Zhang, Y.; He, X.; Ouyang, J.; Yang, H. M. Palladium nanoparticles deposited on silanized halloysite nanotubes: Synthesis, characterization and enhanced catalytic property. Sci. Rep. 2013, 3, 2948.

    Article  Google Scholar 

  29. Yu, Y. T.; Qiu, H. B.; Wu, X. W.; Li, H. C.; Li, Y. S.; Sakamoto, Y.; Inoue, Y.; Sakamoto, K.; Terasaki, O.; Che, S. Synthesis and characterization of silica nanotubes with radially oriented mesopores. Adv. Funct. Mater. 2008, 18, 541–550.

    Article  Google Scholar 

  30. Zhang, A. F.; Hou, K. K.; Gu, L.; Dai, C. Y.; Liu, M.; Song, C. S.; Guo, X. W. Synthesis of silica nanotubes with orientation controlled mesopores in porous membranes via interfacial growth. Chem. Mater. 2012, 24, 1005–1010.

    Article  Google Scholar 

  31. White, R. D.; Bavykin, D. V; Walsh, F. C. The stability of halloysite nanotubes in acidic and alkaline aqueous suspensions. Nanotechnology 2012, 23, 065705.

    Article  Google Scholar 

  32. Zhang, A. B.; Pan, L.; Zhang, H. Y.; Liu, S. T.; Ye, Y.; Xia, M. S.; Chen, X. G. Effects of acid treatment on the physicochemical and pore characteristics of halloysite. Colloid. Surf. A: Physicochem. Eng. Asp. 2012, 396, 182–188.

    Article  Google Scholar 

  33. Joo, Y.; Sim, J. H.; Jeon, Y.; Lee, S. U.; Sohn, D. Opening and blocking the inner-pores of halloysite. Chem. Commun. 2013, 49, 4519–4521.

    Article  Google Scholar 

  34. Ouyang, J.; Guo, B. B.; Fu, L. J.; Yang, H. M.; Hu, Y. H.; Tang, A. D.; Long, H. M.; Jin, Y. L.; Chen, J.; Jiang, J. L. Radical guided selective loading of silver nanoparticles at interior lumen and out surface of halloysite nanotubes. Mater. Des. 2016, 110, 169–178.

    Article  Google Scholar 

  35. Zhang, Y.; Fu, L. J.; Yang, H. M. Insights into the physicochemical aspects from natural halloysite to silica nanotubes. Colloid. Surf. A: Physicochem. Eng. Asp. 2012, 414, 115–119.

    Article  Google Scholar 

  36. Xie, Y. L.; Zhang, Y.; Ouyang, J.; Yang, H. M. Mesoporous material Al-MCM-41 from natural halloysite. Phys. Chem. Miner. 2014, 41, 497–503.

    Article  Google Scholar 

  37. Yang, H. M.; Tang, A. D.; Ouyang, J.; Li, M.; Mann, S. From natural attapulgite to mesoporous materials: Methodology, characterization and structural evolution. J. Phys. Chem. B 2010, 114, 2390–2398.

    Article  Google Scholar 

  38. Wu, S. H.; Mou, C. Y.; Lin, H. P. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev. 2013, 42, 3862–3875.

    Article  Google Scholar 

  39. Galarneau, A.; Iapichella, J.; Bonhomme, K.; Di Renzo, F.; Kooyman, P.; Terasaki, O.; Fajula, F. Controlling the morphology of mesostructured silicas by pseudomorphic transformation: A route towards applications. Adv. Funct. Mater. 2006, 16, 1657–1667.

    Article  Google Scholar 

  40. MacKenzie, K. J. D.; Smith, M. E. Multinuclear Solid-State NMR of Inorganic Materials; Pergamon: London, 2002.

    Google Scholar 

  41. Navrotsky, A. Thermochemistry of nanomaterials. Rev. Mineral. Geochem. 2001, 44, 73–103.

    Article  Google Scholar 

  42. Sahu, S. K.; Unruh, D. K.; Forbes, T. Z.; Navrotsky, A. Energetics of formation and hydration of a porous metal organic nanotube. Chem. Mater. 2014, 26, 5105–5112.

    Article  Google Scholar 

  43. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  44. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.

    Article  Google Scholar 

  45. Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  46. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  47. Guimarães, L.; Enyashin, A. N.; Seifert, G.; Duarte, H. A. Structural, electronic, and mechanical properties of single-walled halloysite nanotube models. J. Phys. Chem. C 2010, 114, 11358–11363.

    Article  Google Scholar 

  48. Ashbrook, S. E.; McManus, J.; MacKenzie, K. J. D.; Wimperis, S. Multiple-quantum and cross-polarized 27Al MAS NMR of mechanically treated mixtures of kaolinite and gibbsite. J. Phys. Chem. B 2000, 104, 6408–6416.

    Article  Google Scholar 

  49. Du, C. F.; Yang, H. M. Investigation of the physicochemical aspects from natural kaolin to Al-MCM-41 mesoporous materials. J. Colloid Interface Sci. 2012, 369, 216–222.

    Article  Google Scholar 

  50. Tunega, D.; Bucko, T.; Zaoui, A. Assessment of ten DFT methods in predicting structures of sheet silicates: Importance of dispersion corrections. J. Chem. Phys. 2012, 137, 114105.

    Article  Google Scholar 

  51. Peng, K.; Fu, L. J.; Ouyang, J.; Yang, H. M. Emerging parallel dual 2D composites: Natural clay mineral hybridizing MoS2 and interfacial structure. Adv. Funct. Mater. 2016, 26, 2666–2675.

    Article  Google Scholar 

  52. Tosoni, S.; Doll, K.; Ugliengo, P. Hydrogen bond in layered materials: Structural and vibrational properties of kaolinite by a periodic B3LYP approach. Chem. Mater. 2006, 18, 2135–2143.

    Article  Google Scholar 

  53. Ugliengo, P.; Zicovich-Wilson, C. M.; Tosoni, S.; Civalleri, B. Role of dispersive interactions in layered materials: A periodic B3LYP and B3LYP-D* study of Mg(OH)2, Ca(OH)2 and kaolinite. J. Mater. Chem. 2009, 19, 2564–2572.

    Article  Google Scholar 

  54. Bish, D. L. Rietveld refinement of the kaolinite structure at 1.5 K. Clays Clay Miner. 1993, 41, 738–744.

    Article  Google Scholar 

  55. Neder, R. B.; Burghammer, M.; Grasl, T. H.; Schulz, H.; Bram, A.; Fiedler, S. Refinement of the kaolinite structure from single-crystal synchrotron data. Clays Clay Miner. 1999, 47, 487–494.

    Article  Google Scholar 

  56. Shivaramaiah, R.; Navrotsky, A. Energetics of order–disorder in layered magnesium aluminum double hydroxides with interlayer carbonate. Inorg. Chem. 2015, 54, 3253–3259.

    Article  Google Scholar 

  57. Nisar, J.; Århammar, C.; Jämstorp, E.; Ahuja, R. Optical gap and native point defects in kaolinite studied by the GGA-PBE, HSE functional, and GW approaches. Phys. Rev. B 2011, 84, 075120.

    Article  Google Scholar 

  58. Yang, H. M.; Li, M.; Fu, L. J.; Tang, A. D.; Mann, S. Controlled assembly of Sb2S3 nanoparticles on silica/polymer nanotubes: Insights into the nature of hybrid interfaces. Sci. Rep. 2013, 3, 1336.

    Article  Google Scholar 

  59. Bian, S. W.; Ma, Z.; Zhang, L. S.; Niu, F.; Song, W. G. Silica nanotubes with mesoporous walls and various internal morphologies using hard/soft dual templates. Chem. Commun. 2009, 1261–1263.

    Google Scholar 

  60. Zhang, Y. H.; Liu, X. Y.; Huang, J. G. Hierarchical mesoporous silica nanotubes derived from natural cellulose substance. ACS Appl. Mater. Interfaces 2011, 3, 3272–3275.

    Article  Google Scholar 

  61. Temuujin, J.; Okada, K.; MacKenzie, K. J. D.; Jadambaa, T. The effect of water vapour atmospheres on the thermal transformation of kaolinite investigated by XRD, FTIR and solid state MAS NMR. J. Eur. Ceram. Soc. 1999, 19, 105–112.

    Article  Google Scholar 

  62. Datt, A.; El-Maazawi, I.; Larsen, S. C. Aspirin loading and release from MCM-41 functionalized with aminopropyl groups via co-condensation or postsynthesis modification methods. J. Phys. Chem. C 2012, 116, 18358–18366.

    Article  Google Scholar 

  63. Datt, A.; Fields, D.; Larsen, S. C. An experimental and computational study of the loading and release of aspirin from zeolite HY.J. Phys. Chem. C 2012, 116, 21382–21390.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 41572036 and 51225403), the Hunan Provincial Science and Technology Project (Nos. 2016RS2004 and 2015TP1006) and the National “Ten Thousand Talents Program” in China. Computing resources were provided by High Performance Computing Centre of Central South University and the National Supercomputing Center of China in Shenzhen. We acknowledge Yalin Xia, Huilin Lun and Binbin Guo for their kind help in sample preparation, characterization and drug loading experiment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huaming Yang or Yuehua Hu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Yang, H., Tang, A. et al. Engineering a tubular mesoporous silica nanocontainer with well-preserved clay shell from natural halloysite. Nano Res. 10, 2782–2799 (2017). https://doi.org/10.1007/s12274-017-1482-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1482-x

Keywords

Navigation