Skip to main content
Log in

Transformation of monolayer MoS2 into multiphasic MoTe2: Chalcogen atom-exchange synthesis route

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Molybdenum ditelluride (MoTe2), which is an important transition-metal dichalcogenide, has attracted considerable interest owing to its unique properties, such as its small bandgap and large Seebeck coefficient. However, the batch production of monolayer MoTe2 has been rarely reported. In this study, we demonstrate the synthesis of large-domain (edge length exceeding 30 μm), monolayer MoTe2 from chemical vapor deposition-grown monolayer MoS2 using a chalcogen atom-exchange synthesis route. An in-depth investigation of the tellurization process reveals that the substitution of S atoms by Te is prevalently initiated at the edges and grain boundaries of the monolayer MoS2, which differs from the homogeneous selenization of MoS2 flakes with the formation of alloyed Mo−S−Se hybrids. Moreover, we detect a large compressive strain (approximately −10%) in the transformed MoTe2 lattice, which possibly drives the phase transition from 2H to 1T’ at the reaction temperature of 500 °C. This phase change is substantiated by experimental facts and first-principles calculations. This work introduces a novel route for the templated synthesis of two-dimensional layered materials through atom substitutional chemistry and provides a new pathway for engineering the strain and thus the intriguing physics and chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  Google Scholar 

  2. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  Google Scholar 

  3. Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

    Article  Google Scholar 

  4. Shi, J. P.; Ma, D. L.; Han, G.-F.; Zhang, Y.; Ji, Q. Q.; Gao, T.; Sun, J. Y.; Song, X. J.; Li, C.; Zhang, Y. S. et al. Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 2014, 8, 10196–10204.

    Article  Google Scholar 

  5. Balendhran, S.; Walia, S.; Nili, H.; Ou, J. Z.; Zhuiykov, S.; Kaner, R. B.; Sriram, S.; Bhaskaran, M.; Kalantar-Zadeh, K. Two-dimensional molybdenum trioxide and dichalcogenides. Adv. Funct. Mater. 2013, 23, 3952–3970.

    Article  Google Scholar 

  6. Ruppert, C.; Aslan, O. B.; Heinz, T. F. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 2014, 14, 6231–6236.

    Article  Google Scholar 

  7. Duerloo, K.-A. N.; Li, Y.; Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 2014, 5, 4214.

    Article  Google Scholar 

  8. Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D.-H.; Chang, K. J.; Suenaga, K. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349, 625–628.

    Article  Google Scholar 

  9. Qian, X. F.; Liu, J. W.; Fu, L.; Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 2014, 346, 1344–1347.

    Article  Google Scholar 

  10. Gong, Z. R.; Liu, G.-B.; Yu, H. Y.; Xiao, D.; Cui, X. D.; Xu, X. D.; Yao, W. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. Nat. Commun. 2013, 4, 2053.

    Article  Google Scholar 

  11. Kane, C. L.; Mele, E. J. Quantum spin hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801.

    Article  Google Scholar 

  12. Huang, L.; McCormick, T. M.; Ochi, M.; Zhao, Z. Y.; Suzuki, M.-T.; Arita, R.; Wu, Y.; Mou, D. X.; Cao, H. B.; Yan, J. Q. et al. Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. Nat. Mater. 2016, 15, 1155–1160.

    Article  Google Scholar 

  13. Deng, K.; Wan, G. L.; Deng, P.; Zhang, K. N.; Ding, S. J.; Wang, E. Y.; Yan, M. Z.; Huang, H. Q.; Zhang, H. Y.; Xu, Z. L. et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat. Phys. 2016, 12, 1105–1110.

    Article  Google Scholar 

  14. Park, J. C.; Yun, S. J.; Kim, H.; Park, J.-H.; Chae, S. H.; An, S.-J.; Kim, J.-G.; Kim, S. M.; Kim, K. K.; Lee, Y. H. Phase-engineered synthesis of centimeter-scale 1T′- and 2H-molybdenum ditelluride thin films. ACS Nano 2015, 9, 6548–6554.

    Article  Google Scholar 

  15. Zhou, L.; Xu, K.; Zubair, A.; Liao, A. D.; Fang, W. J.; Ouyang, F. P.; Lee, Y.-H.; Ueno, K.; Saito, R.; Palacios, T. et al. Large-area synthesis of high-quality uniform few-layer MoTe2. J. Am. Chem. Soc. 2015, 137, 11892–11895.

    Article  Google Scholar 

  16. Naylor, C. H.; Parkin, W. M.; Ping, J. L.; Gao, Z. L.; Zhou, Y. R.; Kim, Y.; Streller, F.; Carpick, R. W.; Rappe, A. M.; Drndic, M. et al. Monolayer single-crystal 1T′-MoTe2 grown by chemical vapor deposition exhibits weak antilocalization effect. Nano Lett. 2016, 16, 4297–4304.

    Article  Google Scholar 

  17. Zhou, L.; Zubair, A.; Wang, Z. Q.; Zhang, X.; Ouyang, F. P.; Xu, K.; Fang, W. J.; Ueno, K.; Li, J.; Palacios, T. et al. Synthesis of high-quality large-area homogenous 1T’ MoTe2 from chemical vapor deposition. Adv. Mater. 2016, 28, 9526–9531.

    Article  Google Scholar 

  18. Jain, P. K.; Amirav, L.; Aloni, S.; Alivisatos, A. P. Nanoheterostructure cation exchange: Anionic framework conservation. J. Am. Chem. Soc. 2010, 132, 9997–9999.

    Article  Google Scholar 

  19. Li, H. B.; Zanella, M.; Genovese, A.; Povia, M.; Falqui, A.; Giannini, C.; Manna, L. Sequential cation exchange in nanocrystals: Preservation of crystal phase and formation of metastable phases. Nano Lett. 2011, 11, 4964–4970.

    Article  Google Scholar 

  20. Son, D. H.; Hughes, S. M.; Yin, Y. D.; Paul Alivisatos, A. Cation exchange reactions in ionic nanocrystals. Science 2004, 306, 1009–1012.

    Article  Google Scholar 

  21. Wong, A. B.; Lai, M. L.; Eaton, S. W.; Yu, Y.; Lin, E.; Dou, L. T.; Fu, A.; Yang, P. D. Growth and anion exchange conversion of CH3NH3PbX3 nanorod arrays for light-emitting diodes. Nano Lett. 2015, 15, 5519–5524.

    Article  Google Scholar 

  22. Zhang, D. D.; Yang, Y. M.; Bekenstein, Y.; Yu, Y.; Gibson, N. A.; Wong, A. B.; Eaton, S. W.; Kornienko, N.; Kong, Q.; Lai, M. L. et al. Synthesis of composition tunable and highly luminescent cesium lead halide nanowires through anionexchange reactions. J. Am. Chem. Soc. 2016, 138, 7236–7239.

    Article  Google Scholar 

  23. Ma, Q.; Isarraraz, M.; Wang, C. S.; Preciado, E.; Klee, V.; Bobek, S.; Yamaguchi, K.; Li, E.; Odenthal, P. M.; Nguyen, A. et al. Postgrowth tuning of the bandgap of single-layer molybdenum disulfide films by sulfur/selenium exchange. ACS Nano 2014, 8, 4672–4677.

    Article  Google Scholar 

  24. Su, S.-H.; Hsu, Y.-T.; Chang, Y.-H.; Chiu, M.-H.; Hsu, C.-L.; Hsu, W.-T.; Chang, W.-H.; He, J.-H.; Li, L.-J. Band gap-tunable molybdenum sulfide selenide monolayer alloy. Small 2014, 10, 2589–2594.

    Article  Google Scholar 

  25. Chen, W.; Zhao, J.; Zhang, J.; Gu, L.; Yang, Z. Z.; Li, X. M.; Yu, H.; Zhu, X. T.; Yang, R.; Shi, D. X. et al. Oxygenassisted chemical vapor deposition growth of large singlecrystal and high-quality monolayer MoS2. J. Am. Chem. Soc. 2015, 137, 15632–15635.

    Article  Google Scholar 

  26. Ji, Q. Q.; Kan, M.; Zhang, Y.; Guo, Y.; Ma, D. L.; Shi, J. P.; Sun, Q.; Chen, Q.; Zhang, Y. F.; Liu, Z. F. Unravelling orientation distribution and merging behavior of monolayer MoS2 domains on sapphire. Nano Lett. 2015, 15, 198–205.

    Article  Google Scholar 

  27. Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D.-H.; Sung, H.-J.; Kan, M.; Kang, H.; Hwang, J.-Y.; Kim, S. W.; Yang, H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 2015, 11, 482–486.

    Article  Google Scholar 

  28. Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

    Article  Google Scholar 

  29. Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

    Article  Google Scholar 

  30. Molina-Sánchez, A.; Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 2011, 84, 155413.

    Article  Google Scholar 

  31. Rong, Y. M.; He, K.; Pacios, M.; Robertson, A. W.; Bhaskaran, H.; Warner, J. H. Controlled preferential oxidation of grain boundaries in monolayer tungsten disulfide for direct optical imaging. ACS Nano 2015, 9, 3695–3703.

    Article  Google Scholar 

  32. Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963–8971.

    Article  Google Scholar 

  33. Liu, Y. N.; Tan, C.; Chou, H.; Nayak, A.; Wu, D.; Ghosh, R.; Chang, H.-Y.; Hao, Y. F.; Wang, X. H.; Kim, J.-S. et al. Thermal oxidation of WSe2 nanosheets adhered on SiO2/Si substrates. Nano Lett. 2015, 15, 4979–4984.

    Article  Google Scholar 

  34. Kang, J.; Tongay, S.; Li, J. B.; Wu, J. Q. Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing. J. Appl. Phys. 2013, 113, 143703.

    Article  Google Scholar 

  35. Komsa, H.-P.; Krasheninnikov, A. V. Two-dimensional transition metal dichalcogenide alloys: Stability and electronic properties. J. Phys. Chem. Lett. 2012, 3, 3652–3656.

    Article  Google Scholar 

  36. Li, H. L.; Duan, X. D.; Wu, X. P.; Zhuang, X. J.; Zhou, H.; Zhang, Q. L.; Zhu, X. L.; Hu, W.; Ren, P. Y.; Guo, P. F. et al. Growth of alloy MoS2x Se2(1–x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc. 2014, 136, 3756–3759.

    Article  Google Scholar 

  37. Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

    Article  Google Scholar 

  38. Shi, J. P.; Zhou, X. B.; Han, G.-F.; Liu, M. X.; Ma, D. L.; Sun, J. Y.; Li, C.; Ji, Q. Q.; Zhang, Y.; Song, X. J. et al. Narrow-gap quantum wires arising from the edges of monolayer MoS2 synthesized on graphene. Adv. Mater. Interfaces 2016, 3, 1600332.

    Article  Google Scholar 

  39. Wang, X. S.; Feng, H. B.; Wu, Y. M.; Jiao, L. Y. Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 2013, 135, 5304–5307.

    Article  Google Scholar 

  40. Ma, D. L.; Shi, J. P.; Ji, Q. Q.; Chen, K.; Yin, J. B.; Lin, J. B.; Zhang, Y.; Liu, M. X.; Feng, Q. L.; Song, X. J. et al. A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Res. 2015, 8, 3662–3672.

  41. Sun, Y. F.; Wang, Y. X.; Sun, D.; Carvalho, B. R.; Read, C. G.; Lee, C.-H.; Lin, Z.; Fujisawa, K.; Robinson, J. A.; Crespi, V. H. et al. Low-temperature solution synthesis of few-layer 1T ′-MoTe2 nanostructures exhibiting lattice compression. Angew. Chem., Int. Ed. 2016, 55, 2830–2834.

    Article  Google Scholar 

  42. Kan, M.; Wang, B.; Lee, Y. H.; Sun, Q. A density functional theory study of the tunable structure, magnetism and metal-insulator phase transition in VS2 monolayers induced by in-plane biaxial strain. Nano Res. 2015, 8, 1348–1356.

    Article  Google Scholar 

  43. Song, S.; Keum, D. H.; Cho, S.; Perello, D.; Kim, Y.; Lee, Y. H. Room temperature semiconductor–metal transition of MoTe2 thin films engineered by strain. Nano Lett. 2016, 16, 188–193.

    Article  Google Scholar 

  44. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  45. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  46. Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support by National Natural Science Foundation of China (Nos. 51472008, 51290272, 51471004, and 51672307), the National High-tech R&D Program of China (No. 2016YFA0200103), the National Basic Research Program of China (No. 2014CB921002), the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (No. KF201601), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB07030200) and the Key Research Program of Frontier Sciences, CAS (No. QYZDB-SSW-JSC035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfeng Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Q., Zhang, Z., Ji, Q. et al. Transformation of monolayer MoS2 into multiphasic MoTe2: Chalcogen atom-exchange synthesis route. Nano Res. 10, 2761–2771 (2017). https://doi.org/10.1007/s12274-017-1480-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1480-z

Keywords

Navigation