Skip to main content
Log in

Embedding lead halide perovskite quantum dots in carboxybenzene microcrystals improves stability

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The stability of lead halide perovskite quantum dots (PQDs) was improved by embedding them in carboxybenzene microcrystals. The resulting needle-shaped mixed microcrystals preserved the strong photoluminescence of the PQDs. Compared with previously reported polystyrene-encapsulated PQDs, the carboxybenzene crystals were robust and protected the dots from moisture and photodegradation. The enhanced stability was attributed to the tight matrix of carboxybenzene microcrystals, which protected the PQDs from moisture. This versatile strategy protected various QDs, including all-inorganic PQDs and chalcogenide QDs (e.g., CdSe/ZnS QDs and CuInS/ZnS QDs). It provides a facile and versatile method of protecting PQDs and may enable applications in solid-state systems with high color quality requirements such as displays, lasers, and light emitting diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brenner, T. M.; Egger, D. A.; Kronik, L.; Hodes, G.; Cahen, D. Hybrid organic-inorganic perovskites: Low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 2016, 1, 15007.

    Article  Google Scholar 

  2. Chen, J. N.; Zhou, S. S.; Jin, S. Y.; Li, H. Q.; Zhai, T. Y. Crystal organometal halide perovskites with promising optoelectronic applications. J. Mater. Chem. C 2016, 4, 11–27.

    Article  Google Scholar 

  3. Stoumpos, C. C.; Kanatzidis, M. G. Halide perovskites: Poor man’s high-performance semiconductors. Adv. Mater. 2016, 28, 5778–5793.

    Article  Google Scholar 

  4. Zhao, Y. X.; Zhu, K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 2016, 45, 655–689.

    Article  Google Scholar 

  5. Chen, Q.; De Marco, N.; Yang, Y.; Song, T.-B.; Chen, C.-C.; Zhao, H. X.; Hong, Z. R.; Zhou, H. P.; Yang, Y. Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 2015, 10, 355–396.

    Article  Google Scholar 

  6. Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514.

    Article  Google Scholar 

  7. Zhang, W.; Eperon, G. E.; Snaith, H. J. Metal halide perovskites for energy applications. Nat. Energy 2016, 1, 16048.

    Article  Google Scholar 

  8. Cho, H.; Jeong, S.-H.; Park, M.-H.; Kim, Y.-H.; Wolf, C.; Lee, C.-L.; Heo, J. H.; Sadhanala, A.; Myoung, N.; Yoo, S. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 2015, 350, 1222–1225.

    Article  Google Scholar 

  9. Wong, A. B.; Lai, M. L.; Eaton, S. W.; Yu, Y.; Lin, E.; Dou, L. T.; Fu, A.; Yang, P. D. Growth and anion exchange conversion of CH3NH3PbX3 nanorod arrays for lightemitting diodes. Nano Lett. 2015, 15, 5519–5524.

    Article  Google Scholar 

  10. Veldhuis, S. A.; Boix, P. P.; Yantara, N.; Li, M. J.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G. Perovskite materials for light-emitting diodes and lasers. Adv. Mater. 2016, 28, 6804–6834.

    Article  Google Scholar 

  11. Sutherland, B. R.; Sargent, E. H. Perovskite photonic sources. Nat. Photonics 2016, 10, 295–302.

    Article  Google Scholar 

  12. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

    Article  Google Scholar 

  13. Alias, M. S.; Yang, Y.; Ng, T. K.; Dursun, I.; Shi, D.; Saidaminov, M. I.; Priante, D.; Bakr, O. M.; Ooi, B. S. Enhanced etching, surface damage recovery, and submicron patterning of hybrid perovskites using a chemically gas-assisted focused-ion beam for subwavelength grating photonic applications. J. Phys. Chem. Lett. 2016, 7, 137–142.

    Article  Google Scholar 

  14. Zhang, F.; Zhong, H. Z.; Chen, C.; Wu, X.-G.; Hu, X. M.; Huang, H. L.; Han, J. B.; Zou, B. S.; Dong, Y. P. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology. ACS Nano 2015, 9, 4533–4542.

    Article  Google Scholar 

  15. Schmidt, L. C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Mínguez Espallargas, G.; Bolink, H. J.; Galian, R. E.; Pérez-Prieto, J. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc. 2014, 136, 850–853.

    Article  Google Scholar 

  16. Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162–7167.

    Article  Google Scholar 

  17. Wang, Y.; Li, X. M.; Song, J. Z.; Xiao, L.; Zeng, H. B.; Sun, H. D. All-inorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics. Adv. Mater. 2015, 27, 7101–7108.

    Article  Google Scholar 

  18. Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.

    Article  Google Scholar 

  19. Ramasamy, P.; Lim, D.-H.; Kim, B.; Lee, S.-H.; Lee, M.-S.; Lee, J.-S. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 2016, 52, 2067–2070.

    Article  Google Scholar 

  20. Palazon, F.; Akkerman, Q. A.; Prato, M.; Manna, L. X-ray lithography on perovskite nanocrystals films: From patterning with anion-exchange reactions to enhanced stability in air and water. ACS Nano 2016, 10, 1224–1230.

    Article  Google Scholar 

  21. Huang, S. Q.; Li, Z. C.; Kong, L.; Zhu, N. W.; Shan, A. D.; Li, L. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “waterless” toluene. J. Am. Chem. Soc. 2016, 138, 5749–5752.

    Article  Google Scholar 

  22. Wang, H. C.; Lin, S. Y.; Tang, A. C.; Singh, B. P.; Tong, H. C.; Chen, C. Y.; Lee, Y. C.; Tsai, T. L.; Liu, R. S. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angew. Chem., Int. Ed. 2016, 55, 7924–7929.

    Article  Google Scholar 

  23. Lee, J.; Sundar, V. C.; Heine, J. R.; Bawendi, M. G.; Jensen, K. F. Full color emission from II-VI semiconductor quantum dot-polymer composites. Adv. Mater. 2000, 12, 1102–1105.

    Article  Google Scholar 

  24. Zhang, H.; Cui, Z.; Wang, Y.; Zhang, K.; Ji, X.; Lü, C.; Yang, B.; Gao, M. From water-soluble CdTe nanocrystals to fluorescent nanocrystals-polymer transparent composites using polymerizable surfactants. Adv. Mater. 2003, 15, 777–780.

    Article  Google Scholar 

  25. Otto, T.; Müller, M.; Mundra, P.; Lesnyak, V.; Demir, H. V.; Gaponik, N.; Eychmüller, A. Colloidal nanocrystals embedded in macrocrystals: Robustness, photostability, and color purity. Nano Lett. 2012, 12, 5348–5354.

    Article  Google Scholar 

  26. Adam, M.; Wang, Z. Y.; Dubavik, A.; Stachowski, G. M.; Meerbach, C.; Soran-Erdem, Z.; Rengers, C.; Demir, H. V.; Gaponik, N.; Eychmüller, A. Liquid-liquid diffusion-assisted crystallization: A fast and versatile approach toward high quality mixed quantum dot-salt crystals. Adv. Funct. Mater. 2015, 25, 2638–2645.

    Article  Google Scholar 

  27. Erdem, T.; Soran-Erdem, Z.; Kelestemur, Y.; Gaponik, N.; Demir, H. V. Excitonic improvement of colloidal nanocrystals in salt powder matrix for quality lighting and color enrichment. Opt. Express 2016, 24, A74–A84.

    Article  Google Scholar 

  28. Müller, M.; Kaiser, M.; Stachowski, G. M.; Resch-Genger, U.; Gaponik, N.; Eychmüller, A. Photoluminescence quantum yield and matrix-induced luminescence enhancement of colloidal quantum dots embedded in ionic crystals. Chem. Mater. 2014, 26, 3231–3237.

    Article  Google Scholar 

  29. Erdem, T.; Soran-Erdem, Z.; Sharma, V. K.; Kelestemur, Y.; Adam, M.; Gaponik, N.; Demir, H. V. Stable and efficient colour enrichment powders of nonpolar nanocrystals in LiCl. Nanoscale 2015, 7, 17611–17616.

    Article  Google Scholar 

  30. Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.

    Article  Google Scholar 

  31. Akkerman, Q. A.; D’Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.

    Article  Google Scholar 

  32. Pathak, S.; Sakai, N.; Rivarola, F. W. R.; Stranks, S. D.; Liu, J. W.; Eperon, G. E.; Ducati, C.; Wojciechowski, K.; Griffiths, J. T.; Haghighirad, A. A. et al. Perovskite crystals for tunable white light emission. Chem. Mater. 2015, 27, 8066–8075.

    Article  Google Scholar 

  33. Palazon, F.; Di Stasio, F.; Akkerman, Q. A.; Krahne, R.; Prato, M.; Manna, L. Polymer-free films of inorganic halide perovskite nanocrystals as UV-to-white color-conversion layers in LEDs. Chem. Mater. 2016, 28, 2902–2906.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Scientific Foundation of China (Nos. 21675133 and 21375112) and the Major Projects Science and Technology of Fujian Province (No. 2011YZ0001-1), which are gratefully acknowledged. Furthermore, we would also like to extend our thanks to Prof. Otto Wolfbeis for his valuable suggestions, Prof. John Hodgkiss of the University of Hong Kong for his assistance with English, Ms. Wen Fu for her assistance with the synthesis of CdSe/ZnS QDs and Ms. Xiaoyun Liu for her help in X-ray single crystal diffraction experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Cai, Z., Li, F. et al. Embedding lead halide perovskite quantum dots in carboxybenzene microcrystals improves stability. Nano Res. 10, 2692–2698 (2017). https://doi.org/10.1007/s12274-017-1471-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1471-0

Keywords

Navigation