Skip to main content
Log in

Ultrathin ZnS nanosheet/carbon nanotube hybrid electrode for high-performance flexible all-solid-state supercapacitor

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Flexible and easily reconfigurable supercapacitors show great promise for application in wearable electronics. In this study, multiwall C nanotubes (CNTs) decorated with hierarchical ultrathin zinc sulfide (ZnS) nanosheets (ZnS@CNT) are synthesized via a facile method. The resulting ZnS@CNT electrode, which delivers a high specific capacitance of 347.3 F·g–1 and an excellent cycling stability, can function as a high-performance electrode for a flexible all-solid-state supercapacitor using a polymer gel electrolyte. Our device exhibits a remarkable specific capacitance of 159.6 F·g–1, a high energy density of 22.3 W·h·kg–1, and a power density of 5 kW·kg–1. It also has high electrochemical performance even under bending or twisting. The all-solid-state supercapacitors can be easily integrated in series to power different commercial light-emitting diodes without an external bias voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.

    Article  Google Scholar 

  2. Miller, J. R.; Simon, P. Electrochemical capacitors for energy management. Science 2008, 321, 651–652.

    Article  Google Scholar 

  3. Xiao, X.; Yuan, L. Y.; Zhong, J. W.; Ding, T. P.; Liu, Y.; Cai, Z. X.; Rong, Y. G.; Han, H. W.; Zhou, J.; Wang, Z. L. Highstrain sensors based on ZnO nanowire/polystyrene hybridized flexible films. Adv. Mater. 2011, 23, 5440–5444.

    Article  Google Scholar 

  4. Zuo, W. H.; Zhu, W. H.; Zhao, D. F.; Sun, Y. F.; Li, Y. Y.; Liu, J. P.; Lou, X. W. Bismuth oxide: A versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries. Energy Environ. Sci. 2016, 9, 2881–2891.

    Article  Google Scholar 

  5. Luo, Y. S.; Luo, J. S.; Jiang, J.; Zhou, W. W.; Yang, H. P.; Qi, X. Y.; Zhang, H.; Fan, H. J.; Yu, D. Y. W.; Li, C. M. et al. Seed-assisted synthesis of highly ordered TiO2@a-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ. Sci. 2012, 5, 6559–6566.

    Article  Google Scholar 

  6. Cheng, J. B.; Yan, H. L.; Lu, Y.; Qiu, K. W.; Hou, X. Y.; Xu, J. Y.; Han, L.; Liu, X. M.; Kim, J. K.; Luo, Y. S. Mesoporous CuCo2O4 nanograsses as multi-functional electrodes for supercapacitors and electro-catalysts. J. Mater. Chem. A 2015, 3, 9769–9776.

    Article  Google Scholar 

  7. Qiu, K. W.; Lu, Y.; Zhang, D. Y.; Cheng, J. B.; Yan, H. L.; Xu, J. Y.; Liu, X. M.; Kim, J. K.; Luo, Y. S. Mesoporous, hierarchical core/shell structured ZnCo2O4/MnO2 nanocone forests for high-performance supercapacitors. Nano Energy 2015, 11, 687–696.

    Article  Google Scholar 

  8. Zhang, D. Y.; Zhang, Y. H.; Li, X. W.; Luo, Y. S.; Huang, H. W.; Wang J. P.; Chu, P. K. Self-assembly of mesoporous ZnCo2O4 nanomaterials: Density functional theory calculation and flexible all-solid-state energy storage. J. Mater. Chem. A 2016, 4, 568–577.

    Article  Google Scholar 

  9. Zhang, Y.; Feng, H.; Wu, X. B.; Wang, L. Z.; Zhang, A. Q.; Xia, T. C.; Dong, H. C.; Li, X. F.; Zhang, L. S. Progress of electrochemical capacitor electrode materials: A review. Int. J. Hydrogen Energy 2009, 34, 4889–4899.

    Article  Google Scholar 

  10. Zhang, L. L.; Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531.

    Article  Google Scholar 

  11. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

    Article  Google Scholar 

  12. Zuo, W. H.; Wang, C.; Li, Y. Y.; Liu, J. P. Directly grown nanostructured electrodes for high volumetric energy density binder-free hybrid supercapacitors: A case study of CNTs//Li4Ti5O12. Sci. Rep. 2015, 5, 7780.

    Article  Google Scholar 

  13. Yoo, J. J.; Balakrishnan, K.; Huang, J. S.; Meunier, V.; Sumpter, B. G.; Srivastava, A.; Conway, M.; Reddy, A. L. M.; Yu, J.; Vajtai, R. et al. Ultrathin planar graphene supercapacitors. Nano Lett. 2011, 11, 1423–1427.

    Article  Google Scholar 

  14. Yuan, C. Z.; Yang, L.; Hou, L. R.; Li, J. Y.; Sun, Y. X.; Zhang, X. G.; Shen, L. F.; Lu, X. J.; Xiong, S. L.; Lou, X. W. Flexible hybrid paper made of monolayer Co3O4 microsphere arrays on rGO/CNTs and their application in electrochemical capacitors. Adv. Funct. Mater. 2012, 22, 2560–2566.

    Article  Google Scholar 

  15. Wang, K.; Zou, W. J.; Quan, B. G.; Yu, A. F.; Wu, H. P.; Jiang, P.; Wei, Z. X. An all-solid-state flexible microsupercapacitor on a chip. Adv. Energy Mater. 2011, 1, 1068–1072.

    Article  Google Scholar 

  16. Liu, J. P.; Guan, C.; Zhou, C.; Fan, Z.; Ke, Q. Q.; Zhang, G. Z.; Liu, C.; Wang, J. A flexible quasi-solid-state nickel-zinc battery with high energy and power densities based on 3D electrode design. Adv. Mater. 2016, 28, 8732–8739.

    Article  Google Scholar 

  17. Niu, Z. Q.; Zhang, L.; Liu, L. L.; Zhu, B. W.; Dong, H. B.; Chen, X. D. All-solid-state flexible ultrathin microsupercapacitors based on graphene. Adv. Mater. 2013, 25, 4035–4042.

    Article  Google Scholar 

  18. Kou, L.; Huang, T. Q.; Zheng, B. N.; Han, Y.; Zhao, X. L.; Gopalsamy, K.; Sun, H. Y.; Gao, C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754.

    Article  Google Scholar 

  19. Li, R. Z.; Wang, Y. M.; Zhou, C.; Wang, C.; Ba, X.; Li, Y. Y.; Huang, X. T.; Liu, J. P. Carbon-stabilized high-capacity ferroferric oxide nanorod array for flexible solid-state alkaline battery-supercapacitor hybrid device with high environmental suitability. Adv. Funct. Mater. 2015, 25, 5384–5394.

    Article  Google Scholar 

  20. Wang, B.; Chen, J. S.; Wang, Z. Y.; Madhavi, S.; Lou, X. W. Green synthesis of NiO nanobelts with exceptional pseudocapacitive properties. Adv. Energy Mater. 2012, 2, 1188–1192.

    Article  Google Scholar 

  21. Chen, Z.; Qin, Y. C.; Weng, D.; Xiao, Q. F.; Peng, Y. T.; Wang, X. L.; Li, H. X.; Wei, F.; Lu, Y. F. Design and synthesis of hierarchical nanowire composites for electrochemical energy storage. Adv. Funct. Mater. 2009, 19, 3420–3426.

    Article  Google Scholar 

  22. Wang, G. P.; Zhang, L.; Zhang, J. J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828.

    Article  Google Scholar 

  23. Lu, X. H.; Yu, M. H.; Wang, G. M.; Zhai, T.; Xie, S. L.; Ling, Y. C.; Tong, Y. X.; Li, Y. H-TiO2@MnO2//H-TiO2@C core–shell nanowires for high performance and flexible asymmetric supercapacitors. Adv. Mater. 2013, 25, 267–272.

    Article  Google Scholar 

  24. Jiang, S. L.; Shi, T. L.; Zhan, X. B.; Long, H.; Xi, S.; Hu, H.; Tang, Z. R. High-performance all-solid-state flexible supercapacitors based on two-step activated carbon cloth. J. Power Sources 2014, 272, 16–23.

    Article  Google Scholar 

  25. Cong, H. P.; Ren, X. C.; Wang, P.; Yu, S. H. Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 2013, 6, 1185–1191.

    Article  Google Scholar 

  26. Liu, H.; Su, D. W.; Zhou, R. F.; Sun, B.; Wang G. X.; Qiao, S. Z. Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater. 2012, 2, 970–975.

    Article  Google Scholar 

  27. Zhou, W. J.; Cao, X. H.; Zeng, Z. Y.; Shi, W. H.; Zhu, Y. Y.; Yan, Q. Y.; Liu, H.; Wang, J. Y.; Zhang, H. One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ. Sci. 2013, 6, 2216–2221.

    Article  Google Scholar 

  28. Mei, L.; Yang, T.; Xu, C.; Zhang, M.; Chen, L. B.; Li, Q. H.; Wang, T. H. Hierarchical mushroom-like CoNi2S4 arrays as a novel electrode material for supercapacitors. Nano Energy 2014, 3, 36–45.

    Article  Google Scholar 

  29. Li, R. Z.; Lin, Z. J.; Ba, X.; Li, Y. Y.; Ding, R. M.; Liu, J. P. Integrated copper-nickel oxide mesoporous nanowire arrays for high energy density aqueous asymmetric supercapacitors. Nanoscale Horiz. 2016, 1, 150–155.

    Article  Google Scholar 

  30. Tian, W.; Zhang, C.; Zhai, T. Y.; Li, S. L.; Wang, X.; Li, J. W.; Jie, X.; Liu, D. Q.; Liao, M. Y.; Koide, Y. et al. Flexible ultraviolet photodetectors with broad photoresponse based on branched ZnS-ZnO heterostructure nanofilms. Adv. Mater. 2014, 26, 3088–3093.

    Article  Google Scholar 

  31. Hu, L. F.; Chen, M.; Shan, W. Z.; Zhan, T. R.; Liao, M. Y.; Fang, X. S.; Hu, X. H.; Wu, L. M. Stacking-order-dependent optoelectronic properties of bilayer nanofilm photodetectors made from hollow ZnS and ZnO microspheres. Adv. Mater. 2012, 24, 5872–5877.

    Article  Google Scholar 

  32. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

    Article  Google Scholar 

  33. Chen, F. J.; Cao, Y. L.; Jia, D. Z. A facile route for the synthesis of ZnS rods with excellent photocatalytic activity. Chem. Eng. J. 2013, 234, 223–231.

    Article  Google Scholar 

  34. Wu, H.; Wang, X. Y.; Jiang, L. L.; Wu, C.; Zhao, Q. L.; Liu, X.; Hu, B. A.; Yi, L. H. The effects of electrolyte on the supercapacitive performance of activated calcium carbide-derived carbon. J. Power Sources 2013, 226, 202–209.

    Article  Google Scholar 

  35. Giambastiani, G.; Cicchi, S.; Giannasi, A.; Luconi, L.; Rossin, A.; Mercuri, F.; Bianchini, C.; Brandi, A.; Melucci, M.; Ghini, G. et al. Functionalization of multiwalled carbon nanotubes with cyclic nitrones for materials and composites: Addressing the role of CNT sidewall defects. Chem. Mater. 2011, 23, 1923–1938.

    Article  Google Scholar 

  36. Liu, B.; Zeng, H. C. Carbon nanotubes supported mesoporous mesocrystals of anatase TiO2. Chem. Mater. 2008, 20, 2711–2718.

    Article  Google Scholar 

  37. Pu, J.; Cui, F. L.; Chu, S. B.; Wang, T. T.; Sheng, E. H.; Wang, Z. H. Preparation and electrochemical characterization of hollow hexagonal NiCo2S4 nanoplates as pseudocapacitor materials. ACS Sustainable Chem. Eng. 2014, 2, 809–815.

    Article  Google Scholar 

  38. Xu, J.; Wang, Q. F.; Wang, X. W.; Xiang, Q. Y.; Liang, B.; Chen, D.; Shen, G. Z. Flexible asymmetric supercapacitors based upon Co9S8 Nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth. ACS Nano 2013, 7, 5453–5462.

    Article  Google Scholar 

  39. Xu, Y. N.; Wang, X. F.; An, C. H.; Wang, Y. J.; Jiao, L. F.; Yuan, H. T. Facile synthesis route of porous MnCo2O4 and CoMn2O4 nanowires and their excellent electrochemical properties in supercapacitors. J. Mater. Chem. A 2014, 2, 16480–16488.

    Article  Google Scholar 

  40. Reddy, R. N.; Reddy, R. G. Porous structured vanadium oxide electrode material for electrochemical capacitors. J. Power Sources 2006, 156, 700–704.

    Article  Google Scholar 

  41. Zhang, B.; Liu, Y. S.; Huang, Z. D.; Oh, S.; Yu, Y.; Mai, Y. W.; Kim, J. K. Urchin-like Li4Ti5O12-carbon nanofiber composites for high rate performance anodes in Li-ion batteries. J. Mater. Chem. 2012, 22, 12133–12140.

    Article  Google Scholar 

  42. Ma, F. X.; Yu, L.; Xu, C. Y.; Lou, X. W. Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties. Energy Environ. Sci. 2016, 9, 862–866.

    Article  Google Scholar 

  43. Meng, Q. H.; Wu, H. P.; Meng, Y. N.; Xie, K.; Wei, Z. X.; Guo, Z. X. High-performance all-carbon yarn microsupercapacitor for an integrated energy system. Adv. Mater. 2014, 26, 4100–4106.

    Article  Google Scholar 

  44. Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Liu, Y.; Huang, Y.; Duan, X. F. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 2013, 7, 4042–4049.

    Article  Google Scholar 

  45. Meng, C. Z.; Liu, C. H.; Chen, L. Z.; Hu, C. H.; Fan, S. S. Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett. 2010, 10, 4025–4031.

    Article  Google Scholar 

  46. Zang, X. B.; Zhu, M.; Li, X.; Li, X. M.; Zhen, Z.; Lao, J. C.; Wang, K. L.; Kang, F. Y.; Wei, B. Q.; Zhu, H. W. Dynamically stretchable supercapacitors based on graphene woven fabric electrodes. Nano Energy 2015, 15, 83–91.

    Article  Google Scholar 

  47. Zang, X. B.; Li, X.; Zhu, M.; Li, X. M.; Zhen, Z.; He, Y. J.; Wang, K. L.; Wei, J. Q.; Kang, F. Y.; Zhu, H. W. Graphene/ polyaniline woven fabric composite films as flexible supercapacitor electrodes. Nanoscale 2015, 7, 7318–7322.

    Article  Google Scholar 

  48. Chee, W. K.; Lim, H. N.; Harrison, I.; Chong, K. F.; Zainal, Z.; Ng, C. H.; Huang, N. M. Performance of flexible and binderless polypyrrole/graphene oxide/zinc oxide supercapacitor electrode in a symmetrical two-electrode configuration. Electrochem. Acta 2015, 157, 88–94.

    Article  Google Scholar 

  49. Aravinda, L. S.; Nagaraja, K. K.; Nagaraja, H. S.; Bhat, K. U.; Bhat, B. R. ZnO/carbon nanotube nanocomposite for high energy density supercapacitors. Electrochem. Acta 2013, 95, 119–124.

    Article  Google Scholar 

  50. Liu, W. W.; Li, X.; Zhu, M. H.; He, X. High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel. J. Power Sources 2015, 282, 179–186.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 61574122, 51502257, 21373107 and U1304108), the Innovative Research Team (in Science and Technology) in Universities in Henan Province (No. 13IRTSTHN018), the Key Project of Henan Educational Committee (No. 15A140035), and the program for Science & Technology Innovation Talents in Universities of Henan Province (No. 15HASTIT018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsong Luo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, X., Peng, T., Cheng, J. et al. Ultrathin ZnS nanosheet/carbon nanotube hybrid electrode for high-performance flexible all-solid-state supercapacitor. Nano Res. 10, 2570–2583 (2017). https://doi.org/10.1007/s12274-017-1459-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1459-9

Keywords

Navigation