Skip to main content
Log in

Capacitance and voltage matching between MnO2 nanoflake cathode and Fe2O3 nanoparticle anode for high-performance asymmetric micro-supercapacitors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Planar micro-supercapacitors show great potential as the energy storage unit in miniaturized electronic devices. Asymmetric structures have been widely investigated in micro-supercapacitors, and carbon-based materials are commonly applied in the electrodes. To integrate different metal oxides in both electrodes in micro-supercapacitors, the critical challenge is the pairing of different faradic metal oxides. Herein, we propose a strategy of matching the voltage and capacitance of two faradic materials that are fully integrated into one high-performance asymmetric micro-supercapacitor by a facile and controllable fabrication process. The fabricated micro-supercapacitors employ MnO2 as the positive active material and Fe2O3 as the negative active material, respectively. The planar asymmetric micro-supercapacitors possess a high capacitance of 60 F·cm–3, a high energy density of 12 mW·h·cm–3, and a broad operation voltage range up to 1.2 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

    Article  Google Scholar 

  2. Achilleos, D. S.; Hatton, T. A. Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance. J. Colloid Interface Sci. 2015, 447, 282–301.

    Article  Google Scholar 

  3. Mai, L. Q.; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828–11862.

    Article  Google Scholar 

  4. Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 2012, 22, 4501–4510.

    Article  Google Scholar 

  5. Tian, X. C.; Xiao, B.; Xu, X.; Xu, L.; Liu, Z. H.; Wang, Z. Y.; Yan, M. Y.; Wei, Q. L.; Mai, L. Q. Vertically stacked holey graphene/polyaniline heterostructures with enhanced energy storage for on-chip micro-supercapacitors. Nano Res. 2016, 9, 1012–1021.

    Article  Google Scholar 

  6. El-Kady, M. F.; Kaner, R. B. Scalable fabrication of highpower graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 2013, 4, 1475.

    Article  Google Scholar 

  7. Ma, X. Y.; Luo, W.; Yan, M. Y.; He, L.; Mai, L. Q. In situ characterization of electrochemical processes in one dimensional nanomaterials for energy storages devices. Nano Energy 2016, 24, 165–188.

    Article  Google Scholar 

  8. Xu, Y. F.; Schwab, M. G.; Strudwick, A. J.; Hennig, I.; Feng, X. L.; Wu, Z. S.; Mü llen, K. Screen-printable thin film supercapacitor device utilizing graphene/polyaniline inks. Adv. Energy Mater. 2013, 3, 1035–1040.

    Article  Google Scholar 

  9. Yin, C.; He, L.; Wang, Y. F.; Liu, Z. H.; Zhang, G. B.; Zhao, K. N.; Tang, C. J.; Yan, M. Y.; Han, Y. L.; Mai, L. Q. Pyrolyzed carbon with embedded NiO/Ni nanospheres for applications in microelectrodes. RSC Adv. 2016, 6, 43436–43441.

    Article  Google Scholar 

  10. Lee, G.; Kim, D.; Yun, J.; Ko, Y.; Cho, J.; Ha, J. S. Highperformance all-solid-state flexible micro supercapacitor arrays with layer-by-layer assembled MWNT/MnOx nanocomposite electrodes. Nanoscale 2014, 6, 9655–9664.

    Article  Google Scholar 

  11. Mai, L. Q.; Xu, X.; Han, C. H.; Luo, Y. Z.; Xu, L.; Wu, Y. A.; Zhao, Y. L. Rational synthesis of silver vanadium oxides/polyaniline triaxial nanowires with enhanced electrochemical property. Nano Lett. 2011, 11, 4992–4996.

    Article  Google Scholar 

  12. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

    Article  Google Scholar 

  13. Yang, Y. J.; He, L.; Tang, C. J.; Hu, P.; Hong, X. F.; Yan, M. Y.; Dong, Y. X.; Tian, X. C.; Wei, Q. L.; Mai, L. Q. Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors. Nano Res. 2016, 9, 2510–2519.

    Article  Google Scholar 

  14. Xu, H. H.; Hu, X. L.; Yang, H. L.; Sun, Y. M.; Hu, C. C.; Huang, Y. H. Flexible asymmetric micro-supercapacitors based on Bi2O3 and MnO2 nanoflowers: Larger areal mass promises higher energy density. Adv. Energy Mater. 2015, 5, 1401882.

    Article  Google Scholar 

  15. Zhou, C.; Zhang, Y. W.; Li, Y. Y.; Liu, J. P. Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. Nano Lett. 2013, 13, 2078–2085.

    Article  Google Scholar 

  16. Long, J. W.; Bélanger, D.; Brousse, T.; Sugimoto, W.; Sassin, M. B.; Crosnier, O. Asymmetric electrochemical capacitors-stretching the limits of aqueous electrolytes. MRS Bull. 2011, 36, 513–522.

    Article  Google Scholar 

  17. Shen, C. W.; Wang, X. H.; Li, S. W.; Wang, J. G.; Zhang, W. F.; Kang, F. Y. A high-energy-density micro supercapacitor of asymmetric MnO2-carbon configuration by using micro-fabrication technologies. J. Power Sources 2013, 234, 302–309.

    Article  Google Scholar 

  18. Yu, D. S.; Goh, K.; Zhang, Q.; Wei, L.; Wang, H.; Jiang, W. C.; Chen, Y. Controlled functionalization of carbonaceous fibers for asymmetric solid-state micro-supercapacitors with high volumetric energy density. Adv. Mater. 2014, 26, 6790–6797.

    Article  Google Scholar 

  19. Liu, W. W.; Yan, X. B.; Chen, J. T.; Feng, Y. Q.; Xue, Q. J. Novel and high-performance asymmetric microsupercapacitors based on graphene quantum dots and polyaniline nanofibers. Nanoscale 2013, 5, 6053–6062.

    Article  Google Scholar 

  20. Yan, J.; Wang, Q.; Wei, T.; Fan, Z. J. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 2014, 4, 1300816.

    Article  Google Scholar 

  21. Wang, Q.; Yan, J.; Fan, Z. J. Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities. Energy Environ. Sci. 2016, 9, 729–762.

    Article  Google Scholar 

  22. Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

    Article  Google Scholar 

  23. Jeong, H. M.; Lee, J. W.; Shin, W. H.; Choi, Y. J.; Shin, H. J.; Kang, J. K.; Choi, J. W. Nitrogen-doped graphene for highperformance ultracapacitors and the importance of nitrogendoped sites at basal planes. Nano Lett. 2011, 11, 2472–2477.

    Article  Google Scholar 

  24. Toupin, M.; Brousse, T.; Bé langer, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 2004, 16, 3184–3190.

    Article  Google Scholar 

  25. Yang, P. H.; Ding, Y.; Lin, Z. Y.; Chen, Z. W.; Li, Y. Z.; Qiang, P. F.; Ebrahimi, M.; Mai, W. J.; Wong, C. P.; Wang, Z. L. Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 2014, 14, 731–736.

    Article  Google Scholar 

  26. Qu, Q. T.; Yang, S. B.; Feng, X. L. 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Adv. Mater. 2011, 23, 5574–5580.

    Article  Google Scholar 

  27. Wu, M. S.; Ou, Y. H.; Lin, Y. P. Electrodeposition of iron oxide nanorods on carbon nanofiber scaffolds as an anode material for lithium-ion batteries. Electrochim. Acta 2010, 55, 3240–3244.

    Article  Google Scholar 

  28. Lokhande, B. J.; Ambare, R. C.; Mane, R. S.; Bharadwaj, S. R. Concentration-dependent electrochemical supercapacitive performance of Fe2O3. Curr. Appl. Phys. 2013, 13, 985–989.

    Article  Google Scholar 

  29. Zhang, C.; Xiao, J.; Qian, L. H.; Yuan, S. L.; Wang, S.; Lei, P. X. Planar integration of flexible micro-supercapacitors with ultrafast charge and discharge based on interdigital nanoporous gold electrodes on a chip. J. Mater. Chem. A 2016, 4, 9502–9510.

    Article  Google Scholar 

  30. de Faria, D. L. A.; Silva, S. V.; de Oliveira, M. T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878.

    Article  Google Scholar 

  31. Julien, C.; Massot, M.; Rangan, S.; Lemal, M.; Guyomard, D. Study of structural defects in ?-MnO2 by Raman spectroscopy. J. Raman Spectrosc. 2002, 33, 223–228.

    Article  Google Scholar 

  32. Duay, J.; Sherrill, S. A.; Gui, Z.; Gillette, E.; Lee, S. B. Self-limiting electrodeposition of hierarchical MnO2 and M(OH)2/MnO2 nanofibril/nanowires: Mechanism and supercapacitor properties. ACS Nano 2013, 7, 1200–1214.

    Article  Google Scholar 

  33. Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574.

    Article  Google Scholar 

  34. Nefedov, V. I.; Salyn, Y. V.; Leonhardt, G.; Scheibe, R. A comparison of different spectrometers and charge corrections used in X-ray photoelectron spectroscopy. J. Electron Spectrosc.Relat. Phenom. 1977, 10, 121–124.

    Article  Google Scholar 

  35. Lee, Y. S.; Kim, H. T.; Yoo, K. O. Effect of ferric oxide on the high-temperature removal of hydrogen sulfide over ZnO-Fe2O3 mixed metal oxide sorbent. Ind. Eng. Chem. Res. 1995, 34, 1181–1188.

    Article  Google Scholar 

  36. Nesbitt, H. W.; Banerjee, D. Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am. Mineral. 1998, 83, 305–315.

    Article  Google Scholar 

  37. Chigane, M.; Ishikawa, M. Manganese oxide thin film preparation by potentiostatic electrolyses and electrochromism. J. Electrochem. Soc. 2000, 147, 2246–2251.

    Article  Google Scholar 

  38. Di Castro, V.; Polzonetti, G.; Contini, G.; Cozza, C.; Paponetti, B. XPS Study of MnO2 minerals treated by bioleaching. Surf. Interface Anal. 1990, 16, 571–574.

    Article  Google Scholar 

  39. Stranick, M. A. MnO2 by XPS. Surf. Sci. Spectra 1999, 6, 31–38.

    Article  Google Scholar 

  40. Huang, P.; Lethien, C.; Pinaud, S.; Brousse, K.; Laloo, R.; Turq, V.; Respaud, M.; Demortiè re, A.; Daffos, B.; Taberna, P. L. et al. On-chip and freestanding elastic carbon films for micro-supercapacitors. Science 2016, 351, 691–695.

    Article  Google Scholar 

  41. Kim, D.; Yun, J.; Lee, G.; Ha, J. S. Fabrication of high performance flexible micro-supercapacitor arrays with hybrid electrodes of MWNT/V2O5 nanowires integrated with a SnO2 nanowire UV sensor. Nanoscale 2014, 6, 12034–12041.

    Article  Google Scholar 

  42. Kong, L. B.; Bai, R. J.; Luo, Y. C.; Kang, L. A comparative study of potentiostatic and potentiodynamic method in the synthesis of MnO2 films for electrochemical capacitors. Adv. Mater. Res. 2011, 239–242, 501–505.

    Article  Google Scholar 

  43. Li, H. Y.; Hou, Y.; Wang, F. X.; Lohe, M. R.; Zhuang, X. D.; Niu, L.; Feng, X. L. Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Adv. Energy Mater. 2017, 7, 1601847.

    Article  Google Scholar 

  44. Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 2015, 6, 6616.

    Article  Google Scholar 

  45. Gogotsi, Y.; Simon, P. True performance metrics in electrochemical energy storage. Science 2011, 334, 917–918.

    Article  Google Scholar 

  46. Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L. M.; Ci, L. J.; Vajtai, R.; Zhang, Q.; Wei, B. Q.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496–500.

    Article  Google Scholar 

  47. Lin, J.; Zhang, C. G.; Yan, Z.; Zhu, Y.; Peng, Z. W.; Hauge, R. H.; Natelson, D.; Tour, J. M. 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 2013, 13, 72–78.

  48. Pech, D.; Brunet, M.; Durou, H.; Huang, P. H.; Mochalin, V.; Gogotsi, Y.; Taberna, P. L.; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 2010, 5, 651–654.

    Article  Google Scholar 

  49. El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.

    Article  Google Scholar 

  50. Wu, Z. S.; Parvez, K.; Feng, X. L.; Müllen, K. Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 2013, 4, 2487.

    Google Scholar 

  51. Mai, L. Q.; Dong, F.; Xu, X.; Luo, Y. Z.; An, Q. Y.; Zhao, Y. L.; Pan, J.; Yang, J. N. Cucumber-like V2O5/poly(3,4-ethylenedioxythiophene)&MnO2 nanowires with enhanced electrochemical cyclability. Nano Lett. 2013, 13, 740–745.

    Article  Google Scholar 

  52. Zhu, M. Y.; Wang, Y.; Meng, D. H.; Qin, X. Z.; Diao, G. W. Hydrothermal synthesis of hematite nanoparticles and their electrochemical properties. J. Phys. Chem. C 2012, 116, 16276–16285.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0202603), the National Basic Research Program of China (No. 2013CB934103), the Programme of Introducing Talents of Discipline to Universities (No. B17034), the National Natural Science Foundation of China (Nos. 51521001, 51502227, 51579198, and 51302203), the National Natural Science Fund for Distinguished Young Scholars (No. 51425204), and the Fundamental Research Funds for the Central Universities (WUT: 2016III001, 2016III005, 2016III006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Xu or Liqiang Mai.

Electronic supplementary material

12274_2017_1451_MOESM1_ESM.pdf

Capacitance and voltage matching between MnO2 nanoflake cathode and Fe2O3 nanoparticle anode for high-performance asymmetric micro-supercapacitors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Tian, X., Xu, X. et al. Capacitance and voltage matching between MnO2 nanoflake cathode and Fe2O3 nanoparticle anode for high-performance asymmetric micro-supercapacitors. Nano Res. 10, 2471–2481 (2017). https://doi.org/10.1007/s12274-017-1451-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1451-4

Keywords

Navigation