Skip to main content
Log in

Near-infrared (NIR) controlled reversible cell adhesion on a responsive nano-biointerface

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Light-activated dynamic variations have promoted the development of smart interfaces, especially nano-biointerfaces. In this article, the near-infrared (NIR)-responsive surface for controlling cell adhesion was designed by grafting a thermal responsive polymer (poly(N-isopropylacrylamide), PNIPAM) onto silicon nanowires (SiNWs) instead of the traditional photosensitive moieties. NIR induced the photothermal effect of the SiNWs, and the local heat induced thermodynamic phase transformation of PNIPAM. With the application of NIR radiation, the surface turned to a hydrophobic state, and restored to the hydrophilic state when NIR was switched off, leading to reversible cell adhesion and release. The switchable wettability of the surface and cell adhesion/release occurred efficiently even after 20 cycles. Proteins were anchored on the surface via hydrophobic interactions using NIR; further connection of a cell-capture agent helped in achieving specific cell capture. This dynamic control of cell adhesion via NIR may provide new clues for designing functional nano-biointerfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mager, M. D.; LaPointe, V.; Stevens, M. M. Exploring and exploiting chemistry at the cell surface. Nat. Chem. 2011, 3, 582–589.

    Article  Google Scholar 

  2. Sachs, N.; Sonnenberg, A. Cell-matrix adhesion of podocytes in physiology and disease. Nat. Rev. Nephrol. 2013, 9, 200–210.

    Article  Google Scholar 

  3. Sekine, H.; Shimizu, T.; Sakaguchi, K.; Dobashi, I.; Wada, M.; Yamato, M.; Kobayashi, E.; Umezu, M.; Okano, T. In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat. Commun. 2013, 4, 1399–1409.

    Article  Google Scholar 

  4. Liu, X. L.; Wang, S. T. Three-dimensional nano-biointerface as a new platform for guiding cell fate. Chem. Soc. Rev. 2014, 43, 2385–2401.

    Article  Google Scholar 

  5. Sun, T. L.; Qing, G. Y.; Su, B. L.; Jiang, L. Functional biointerface materials inspired from nature. Chem. Soc. Rev. 2011, 40, 2909–2921.

    Article  Google Scholar 

  6. Okano, T.; Yamada, N.; Okuhara, M.; Sakai, H.; Sakurai, Y. Mechanism of cell detachment from temperature-modulated, hydrophilic–hydrophobic polymer surfaces. Biomaterials 1995, 16, 297–303.

    Article  Google Scholar 

  7. Yeo, W.-S.; Yousaf, M. N.; Mrksich, M. Dynamic interfaces between cells and surfaces: Electroactive substrates that sequentially release and attach cells. J. Am. Chem. Soc. 2003, 125, 14994–14995.

    Article  Google Scholar 

  8. Ito, A.; Ino, K.; Kobayashi, T.; Honda, H. The effect of RGD peptide-conjugated magnetite cationic liposomes on cell growth and cell sheet harvesting. Biomaterials 2005, 26, 6185–6193.

    Article  Google Scholar 

  9. Ohmuro-Matsuyama, Y.; Tatsu, Y. Photocontrolled cell adhesion on a surface functionalized with a caged arginineglycine- aspartate peptide. Angew. Chem., Int. Ed. 2008, 47, 7527–7529.

    Article  Google Scholar 

  10. Petersen, S.; Alonso, J. M.; Specht, A.; Duodu, P.; Goeldner, M.; del Campo, A. Phototriggering of cell adhesion by caged cyclic rgd peptides. Angew. Chem., Int. Ed. 2008, 47, 3192–3195.

    Article  Google Scholar 

  11. Wischerhoff, E.; Uhlig, K.; Lankenau, A.; Börner, H. G.; Laschewsky, A.; Duschl, C.; Lutz, J. F. Controlled cell adhesion on PEG-based switchable surfaces. Angew. Chem., Int. Ed. 2008, 47, 5666–5668.

    Article  Google Scholar 

  12. Kloxin, A. M.; Kasko, A. M.; Salinas, C. N.; Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 2009, 324, 59–63.

    Article  Google Scholar 

  13. Jeon, S.; Moon, J. M.; Lee, E. S.; Kim, Y. H.; Cho, Y. An electroactive biotin-doped polypyrrole substrate that immobilizes and releases EpCAM-positive cancer cells. Angew. Chem., Int. Ed. 2014, 53, 4597–4602.

    Article  Google Scholar 

  14. Pan, G. Q.; Guo, B. B.; Ma, Y.; Cui, W. G.; He, F.; Li, B.; Yang, H. L.; Shea, K. J. Dynamic introduction of cell adhesive factor via reversible multicovalent phenylboronic acid/cis-diol polymeric complexes. J. Am. Chem. Soc. 2014, 136, 6203–6206.

    Article  Google Scholar 

  15. Sakuma, M.; Kumashiro, Y.; Nakayama, M.; Tanaka, N.; Umemura, K.; Yamato, M.; Okano, T. Thermoresponsive nanostructured surfaces generated by the langmuir–schaefer method are suitable for cell sheet fabrication. Biomacromolecules 2014, 15, 4160–4167.

    Article  Google Scholar 

  16. Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 2001, 19, 316–317.

    Article  Google Scholar 

  17. Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the nearinfrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115–2120.

    Article  Google Scholar 

  18. Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X. Z.; Feng, L. Z.; Sun, B. Q.; Liu, Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 2014, 26, 3433–3440.

    Article  Google Scholar 

  19. Wirkner, M.; Alonso, J. M.; Maus, V.; Salierno, M.; Lee, T. T.; García, A. J.; del Campo, A. Triggered cell release from materials using bioadhesive photocleavable linkers. Adv. Mater. 2011, 23, 3907–3910.

    Article  Google Scholar 

  20. Li, W.; Wang, J. S.; Ren, J. S.; Qu, X. G. Near-infrared upconversion controls photocaged cell adhesion. J. Am. Chem. Soc. 2014, 136, 2248–2251.

    Article  Google Scholar 

  21. Lee, T. T.; García, J. R.; Paez, J. I.; Singh, A.; Phelps, E. A.; Weis, S.; Shafiq, Z.; Shekaran, A.; Del Campo, A.; García, A. J. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nat. Mater. 2015, 14, 352–360.

    Article  Google Scholar 

  22. Auernheimer, J.; Dahmen, C.; Hersel, U.; Bausch, A.; Kessler, H. Photoswitched cell adhesion on surfaces with rgd peptides. J. Am. Chem. Soc. 2005, 127, 16107–16110.

    Article  Google Scholar 

  23. Liu, D. B.; Xie, Y. Y.; Shao, H. W.; Jiang, X. Y. Using azobenzene-embedded self-assembled monolayers to photochemically control cell adhesion reversibly. Angew. Chem., Int. Ed. 2009, 48, 4406–4408.

    Article  Google Scholar 

  24. Wang, N.; Li, Y. M.; Zhang, Y. Y.; Liao, Y.; Liu, W. G. High-strength photoresponsive hydrogels enable surfacemediated gene delivery and light-induced reversible cell adhesion/detachment. Langmuir 2014, 30, 11823–11832.

    Article  Google Scholar 

  25. Li, W.; Chen, Z. W.; Zhou, L.; Li, Z. H.; Ren, J. S.; Qu, X. G. Noninvasive and reversible cell adhesion and detachment via single-wavelength near-infrared laser mediated photoisomerization. J. Am. Chem. Soc. 2015, 137, 8199–8205.

    Article  Google Scholar 

  26. Zhou, J.; Liu, Z.; Li, F. Y. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012, 41, 1323–1349.

    Article  Google Scholar 

  27. Han, S. Y.; Deng, R. R.; Xie, X. J.; Liu, X. G. Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 11702–11715.

    Article  Google Scholar 

  28. Wang, F.; Liu, X. G. Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation. Acc. Chem. Res. 2014, 47, 1378–1385.

    Article  Google Scholar 

  29. Sun, Y.; Feng, W.; Yang, P. Y.; Huang, C. H.; Li, F. Y. The biosafety of lanthanide upconversion nanomaterials. Chem. Soc. Rev. 2015, 44, 1509–1525.

    Article  Google Scholar 

  30. Ray, P. C.; Khan, S. A.; Singh, A. K.; Senapati, D.; Fan, Z. Nanomaterials for targeted detection and photothermal killing of bacteria. Chem. Soc. Rev. 2012, 41, 3193–3209.

    Article  Google Scholar 

  31. Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869–10939.

    Article  Google Scholar 

  32. Wang, C.; Xu, L. G.; Liang, C.; Xiang, J.; Peng, R.; Liu, Z. Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with Anti-CTLA-4 therapy to inhibit cancer metastasis. Adv. Mater. 2014, 26, 8154–8162.

    Article  Google Scholar 

  33. Liu, J. J.; Wang, C.; Wang, X. J.; Wang, X.; Cheng, L.; Li, Y. G.; Liu, Z. Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light-responsive platform for cancer combination therapy. Adv. Funct. Mater. 2015, 25, 384–392.

    Article  Google Scholar 

  34. Yavuz, M. S.; Cheng, Y. Y.; Chen, J. Y.; Cobley, C. M.; Zhang, Q.; Rycenga, M.; Xie, J. W.; Kim, C.; Song, K. H.; Schwartz, A. G. et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 2009, 8, 935–939.

    Article  Google Scholar 

  35. Moon, G. D.; Choi, S. W.; Cai, X.; Li, W. Y.; Cho, E. C.; Jeong, U.; Wang, L. V.; Xia, Y. N. A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J. Am. Chem. Soc. 2011, 133, 4762–4765.

    Article  Google Scholar 

  36. Wang, J.; Wei, Y. R.; Hu, X. X.; Fang, Y. Y.; Li, X. Y.; Liu, J.; Wang, S. F.; Yuan, Q. Protein activity regulation: Inhibition by closed-loop aptamer-based structures and restoration by near-IR stimulation. J. Am. Chem. Soc. 2015, 137, 10576–10584.

    Article  Google Scholar 

  37. Kim, J. D.; Heo, J. S.; Park, T.; Park, C.; Kim, H. O.; Kim, E. Photothermally induced local dissociation of collagens for harvesting of cell sheets. Angew. Chem., Int. Ed. 2015, 54, 5869–5873.

    Article  Google Scholar 

  38. Kim, W.; Ng, J. K.; Kunitake, M. E.; Conklin, B. R.; Yang, P. D. Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc. 2007, 129, 7228–7229.

    Article  Google Scholar 

  39. Peng, K. Q.; Lee, S. T. Silicon nanowires for photovoltaic solar energy conversion. Adv. Mater. 2011, 23, 198–215.

    Article  Google Scholar 

  40. Su, Y. Y.; Wei, X. P.; Peng, F.; Zhong, Y. L.; Lu, Y. M.; Su, S.; Xu, T. T.; Lee, S. T.; He, Y. Gold nanoparticlesdecorated silicon nanowires as highly efficient near-infrared hyperthermia agents for cancer cells destruction. Nano Lett. 2012, 12, 1845–1850.

    Article  Google Scholar 

  41. Peng, F.; Su, Y. Y.; Zhong, Y. L.; Fan, C. H.; Lee, S.-T.; He, Y. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc. Chem. Res. 2014, 47, 612–623.

    Article  Google Scholar 

  42. Matyjaszewski, K. Atom transfer radical polymerization (ATRP): Current status and future perspectives. Macromolecules 2012, 45, 4015–4039.

    Article  Google Scholar 

  43. Li, B.; Yu, B.; Ye, Q.; Zhou, F. Tapping the potential of polymer brushes through synthesis. Acc. Chem. Res. 2015, 48, 229–237.

    Article  Google Scholar 

  44. Peng, K. Q.; Yan, Y. J.; Gao, S. P.; Zhu, J. Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry. Adv. Mater. 2002, 14, 1164–1167.

    Article  Google Scholar 

  45. Chen, L.; Liu, X. L.; Su, B.; Li, J.; Jiang, L.; Han, D.; Wang, S. T. Aptamer-mediated efficient capture and release of T lymphocytes on nanostructured surfaces. Adv. Mater. 2011, 23, 4376–4380.

    Article  Google Scholar 

  46. Liu, H. L.; Li, Y. Y.; Sun, K.; Fan, J. B.; Zhang, P. C.; Meng, J. X.; Wang, S. T.; Jiang, L. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells. J. Am. Chem. Soc. 2013, 135, 7603–7609.

    Article  Google Scholar 

  47. Zhang, P. C.; Chen, L.; Xu, T. L.; Liu, H. L.; Liu, X. L.; Meng, J. X.; Yang, G.; Jiang, L.; Wang, S. T. Programmable fractal nanostructured interfaces for specific recognition and electrochemical release of cancer cells. Adv. Mater. 2013, 25, 3566–3570.

    Article  Google Scholar 

  48. Meng, J. X.; Zhang, P. C.; Zhang, F. L.; Liu, H. L.; Fan, J. B.; Liu, X. L.; Yang, G.; Jiang, L.; Wang, S. T. A self-cleaning TiO2 nanosisal-like coating toward disposing nanobiochips of cancer detection. ACS Nano 2015, 9, 9284–9291.

  49. Zhang, F. L.; Jiang, Y.; Liu, X. L.; Meng, J. X.; Zhang, P. C.; Liu, H. L.; Yang, G.; Li, G. N.; Jiang, L.; Wan, L. J. et al. Hierarchical nanowire arrays as three-dimensional fractal nanobiointerfaces for high efficient capture of cancer cells. Nano Lett. 2016, 16, 766–772.

    Article  Google Scholar 

  50. Liu, H. L.; Liu, X. L.; Meng, J. X.; Zhang, P. C.; Yang, G.; Su, B.; Sun, K.; Chen, L.; Han, D.; Wang, S. T. et al. Hydrophobic interaction-mediated capture and release of cancer cells on thermoresponsive nanostructured surfaces. Adv. Mater. 2013, 25, 922–927.

    Article  Google Scholar 

  51. Liu, X. L.; Chen, L.; Liu, H. L.; Yang, G.; Zhang, P. C.; Han, D.; Wang, S. T.; Jiang, L. Bio-inspired soft polystyrene nanotube substrate for rapid and highly efficient breast cancer-cell capture. NPG Asia Mater. 2013, 5, e63.

    Article  Google Scholar 

  52. Wang, L. Y.; Liu, H. L.; Zhang, F. L.; Li, G. N.; Wang, S. T. Smart thin hydrogel coatings harnessing hydrophobicity and topography to capture and release cancer cells. Small 2016, 12, 4697–4701.

    Article  Google Scholar 

  53. Xue, C. Y.; Choi, B.-C.; Choi, S.; Braun, P. V.; Leckband, D. E. Protein adsorption modes determine reversible cell attachment on poly(N-isopropyl acrylamide) brushes. Adv. Funct. Mater. 2012, 22, 2394–2401.

    Article  Google Scholar 

  54. Zhang, N. G.; Deng, Y. L.; Tai, Q. D.; Cheng, B. R.; Zhao, L. B.; Shen, Q. L.; He, R. X.; Hong, L. Y.; Liu, W.; Guo, S. S. et al. Electrospun TiO2 nanofiber-based cell capture assay for detecting circulating tumor cells from colorectal and gastric cancer patients. Adv. Mater. 2012, 24, 2756–2760.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Basic Research Program of China (No. 2012CB933800), National Natural Science Foundation of China (Nos. 21425314, 21501184, 21434009, 21421061 and 21504098), the Key Research Program of the Chinese Academy of Sciences (No. KJZD-EW-M01), the National High-tech R&D Program of China (863 Program) (No. 2013AA032203), MOST (No. 2013YQ190467), the Top-Notch Young Talents Program of China, and Beijing Municipal Science & Technology Commission (No. Z161100000116037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shutao Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, H., Zhang, P., Wang, W. et al. Near-infrared (NIR) controlled reversible cell adhesion on a responsive nano-biointerface. Nano Res. 10, 1345–1355 (2017). https://doi.org/10.1007/s12274-017-1446-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1446-1

Keywords

Navigation