Skip to main content
Log in

Sorafenib delivery nanoplatform based on superparamagnetic iron oxide nanoparticles magnetically targets hepatocellular carcinoma

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Currently, sorafenib is the only systemic therapy capable of increasing overall survival of hepatocellular carcinoma patients. Unfortunately, its side effects, particularly its overall toxicity, limit the therapeutic response that can be achieved. Superparamagnetic iron oxide nanoparticles (SPIONs) are very attractive for drug delivery because they can be targeted to specific sites in the body through application of a magnetic field, thus improving intratumoral accumulation and reducing adverse effects. Here, nanoformulations based on polyethylene glycol modified phospholipid micelles, loaded with both SPIONs and sorafenib, were successfully prepared and thoroughly investigated by complementary techniques. This nanovector system provided effective drug delivery, had an average hydrodynamic diameter of about 125 nm, had good stability in aqueous medium, and allowed controlled drug loading. Magnetic analysis allowed accurate determination of the amount of SPIONs embedded in each micelle. An in vitro system was designed to test whether the SPION micelles can be efficiently held using a magnetic field under typical flow conditions found in the human liver. Human hepatocellular carcinoma (HepG2) cells were selected as an in vitro system to evaluate tumor cell targeting efficacy of the superparamagnetic micelles loaded with sorafenib. These experiments demonstrated that this delivery platform is able to enhance sorafenib’s antitumor effectiveness by magnetic targeting. The magnetic nanovectors described here represent promising candidates for targeting specific hepatic tumor sites, where selective release of sorafenib can improve its efficacy and safety profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Villanueva, A.; Llovet, J. M. Targeted therapies for hepatocellular carcinoma. Gastroenterology 2011, 140, 1410–1426.

    Article  Google Scholar 

  2. Goodwin, S. C.; Bittner, C. A.; Peterson, C. L.; Wong, G. Single-dose toxicity study of hepatic intra-arterial infusion of doxorubicin coupled to a novel magnetically targeted drug carrier. Toxicol. Sci. 2001, 60, 177–183.

    Article  Google Scholar 

  3. Deng, G. L.; Zeng, S.; Shen, H. Chemotherapy and target therapy for hepatocellular carcinoma: New advances and challenges. World J. Hepatol. 2015, 7, 787–798.

    Article  Google Scholar 

  4. El-Serag, H. B.; Marrero, J. A.; Rudolph, L.; Reddy, K. R. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology 2008, 134, 1752–1763.

    Article  Google Scholar 

  5. Azzariti, A.; Porcelli, L.; Quatrale, A. E.; Paradiso, A.; Giannelli, G. Sorafenib effectiveness is inhibited in presence of laminin-5 in HCC cells. J. Hepatol. 2012, 56, S114.

    Article  Google Scholar 

  6. Kumar, A.; Jena, P. K.; Behera, S.; Lockey, R. F.; Mohapatra, S.; Mohapatra, S. Multifunctional magnetic nanoparticles for targeted delivery. Nanomedicine 2010, 6, 64–69.

    Article  Google Scholar 

  7. Valente, G.; Depalo, N.; de Paola, I.; Iacobazzi, R. M.; Denora, N.; Laquintana V.; Comparelli, R.; Altamura, E.; Latronico, T.; Altomare, M. et al. Integrin-targeting with peptide-bioconjugated semiconductor-magnetic nanocrystalline heterostructures. Nano Res. 2016, 9, 644–662.

    Article  Google Scholar 

  8. Fanizza, E.; Iacobazzi, R. M.; Laquintana, V.; Valente, G.; Caliandro, G.; Striccoli, M.; Agostiano, A.; Cutrignelli, A.; Lopedota, A.; Curri, M. L. et al. Highly selective luminescent nanostructures for mitochondrial imaging and targeting. Nanoscale 2016, 8, 3350–3361.

    Article  Google Scholar 

  9. Laquintana, V.; Denora, N.; Lopalco, A.; Lopedota, A.; Cutrignelli, A.; Lasorsa, F. M.; Agostino, G.; Franco, M. Translocator protein ligand-PLGA conjugated nanoparticles for 5-fluorouracil delivery to glioma cancer cells. Mol. Pharm. 2014, 11, 859–871.

    Article  Google Scholar 

  10. Denora, N.; Cassano, T.; Laquintana, V.; Lopalco, A.; Trapani, A.; Cimmino, C. S.; Laconca, L.; Giuffrida, A.; Trapani, G. Novel codrugs with GABAergic activity for dopamine delivery in the brain. Int. J. Pharm. 2012, 437, 221–231.

    Article  Google Scholar 

  11. Prijic, S.; Sersa, G. Magnetic nanoparticles as targeted delivery systems in oncology. Radiol. Oncol. 2011, 45, 1–16.

    Article  Google Scholar 

  12. Arruebo, M.; Fernández-Pacheco, R.; Ibarra, M. R.; Santamaría, J. Magnetic nanoparticles for drug delivery. Nano Today 2007, 2, 22–32.

    Article  Google Scholar 

  13. Pablico-Lansigan, M. H.; Situ, S. F.; Samia, A. C. S. Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and image-guided therapy. Nanoscale 2013, 5, 4040–4055.

    Article  Google Scholar 

  14. Owen, J.; Rademeyer, P.; Chung, D.; Cheng, Q.; Holroyd, D.; Coussios, C.; Friend, P.; Pankhurst, Q. A.; Stride, E. Magnetic targeting of microbubbles against physiologically relevant flow conditions. Interface Focus 2016, 6, 20150097.

    Article  Google Scholar 

  15. Alexiou, C.; Arnold, W.; Klein, R. J.; Parak, F. G.; Hulin, P.; Bergemann, C.; Erhardt, W.; Wagenpfeil, S.; Lübbe, A. S. Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 2000, 60, 6641–6648.

    Google Scholar 

  16. Liang, P. C.; Chen, Y. C.; Chiang, C. F.; Mo, L. R.; Wei, S. Y.; Hsieh, W. Y.; Lin, W. L. Doxorubicin-modified magnetic nanoparticles as a drug delivery system for magnetic resonance imaging-monitoring magnet-enhancing tumor chemotherapy. Int. J. Nanomedicine 2016, 11, 2021–2037.

    Google Scholar 

  17. Veiseh, O.; Gunn, J. W.; Zhang, M. Q. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev. 2010, 62, 284–304.

    Article  Google Scholar 

  18. Shapiro, B.; Kulkarni, S.; Nacev, A.; Muro, S.; Stepanov, P. Y.; Weinberg, I. N. Open challenges in magnetic drug targeting. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2015, 7, 446–457.

    Google Scholar 

  19. Kamaly, N.; Xiao, Z. Y.; Valencia, P. M.; Radovic-Moreno, A. F.; Farokhzad, O. C. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem. Soc. Rev. 2012, 41, 2971–3010.

    Article  Google Scholar 

  20. Ao, L. J.; Wang, B.; Liu, P.; Huang, L.; Yue, C. X.; Gao, D. Y.; Wu, C. L.; Su, W. A folate-integrated magnetic polymer micelle for MRI and dual targeted drug delivery. Nanoscale 2014, 6, 10710–10716.

    Article  Google Scholar 

  21. Ye, F.; Barrefelt, A.; Asem, H.; Abedi-Valugerdi, M.; El-Serafi, I.; Saghafian, M.; Abu-Salah, K.; Alrokayan, S.; Muhammed, M.; Hassan, M. Biodegradable polymeric vesicles containing magnetic nanoparticles, quantum dots and anticancer drugs for drug delivery and imaging. Biomaterials 2014, 35, 3885–3894.

    Article  Google Scholar 

  22. Hu, J. M.; Qian, Y. F.; Wang, X. F.; Liu, T.; Liu, S. Y. Drug-loaded and superparamagnetic iron oxide nanoparticle surface-embedded amphiphilic block copolymer micelles for integrated chemotherapeutic drug delivery and MR imaging. Langmuir 2012, 28, 2073–2082.

    Article  Google Scholar 

  23. Pouponneau, P.; Leroux, J.-C.; Soulez, G.; Gaboury, L.; Martel, S. Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation. Biomaterials 2011, 32, 3481–3486.

    Article  Google Scholar 

  24. Zhang, L.; Gong, F. M.; Zhang, F.; Ma, J.; Zhang, P. D.; Shen, J. Targeted therapy for human hepatic carcinoma cells using folate-functionalized polymeric micelles loaded with superparamagnetic iron oxide and sorafenib in vitro. Int. J. Nanomedicine 2013, 8, 1517–1524.

    Article  Google Scholar 

  25. Lin, M. M.; Kang, Y. J.; Sohn, Y.; Kim, D. K. Dual targeting strategy of magnetic nanoparticle-loaded and RGD peptideactivated stimuli-sensitive polymeric micelles for delivery of paclitaxel. J. Nanopart. Res. 2015, 17, 248.

    Article  Google Scholar 

  26. Wang, J.; Wang, Y. G.; Liang, W. Delivery of drugs to cell membranes by encapsulation in PEG–PE micelles. J. Control. Release 2012, 160, 637–651.

    Article  Google Scholar 

  27. Wang, J.; Fang, X. C.; Liang, W. Pegylated phospholipid micelles induce endoplasmic reticulum-dependent apoptosis of cancer cells but not normal cells. ACS Nano 2012, 6, 5018–5030.

    Article  Google Scholar 

  28. Wang, Y. G.; Wang, R. Q.; Lu, X. Y.; Lu, W. L.; Zhang, C. L.; Liang, W. Pegylated phospholipids-based self-assembly with water-soluble drugs. Pharm. Res. 2010, 27, 361–370.

    Article  Google Scholar 

  29. Depalo, N.; Carrieri, P.; Comparelli, R.; Striccoli, M.; Agostiano, A.; Bertinetti, L.; Innocenti, C.; Sangregorio, C.; Curri, M. L. Biofunctionalization of anisotropic nanocrystalline semiconductor-magnetic heterostructures. Langmuir 2011, 27, 6962–6970.

    Article  Google Scholar 

  30. Buonsanti, R.; Grillo, V.; Carlino, E.; Giannini, C.; Curri, M. L.; Innocenti, C.; Sangregorio, C.; Achterhold, K.; Parak, F. G.; Agostiano, A. et al. Seeded growth of asymmetric binary nanocrystals made of a semiconductor TiO2 rodlike section and a magnetic Fe2O3 spherical domain. J. Am. Chem. Soc. 2006, 128, 16953–16970.

    Article  Google Scholar 

  31. Depalo, N.; Mallardi, A.; Comparelli, R.; Striccoli, M.; Agostiano, A.; Curri, M. L. Luminescent nanocrystals in phospholipid micelles for bioconjugation: An optical and structural investigation. J. Colloid Interface Sci. 2008, 325, 558–566.

    Article  Google Scholar 

  32. Denora, N.; Laquintana, V.; Lopalco, A.; Iacobazzi, R. M.; Lopedota, A.; Cutrignelli, A.; Iacobellis, G.; Annese, C.; Cascione, M.; Leporatti, S. et al. In vitro targeting and imaging the translocator protein TSPO 18-kDa through G(4)-PAMAM–FITC labeled dendrimer. J. Control. Release 2013, 172, 1111–1125.

    Article  Google Scholar 

  33. Coey J. M. D. Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys. Rev. Lett. 1971, 27, 1140–1142.

    Article  Google Scholar 

  34. Kolhaktar, A. G.; Jamison, A. C.; Litvinov, D.; Willson, R. C.; Lee T. R. Tuning the magnetic properties of nanoparticles. Int. J. Mol. Sci. 2013, 14, 15977–16009.

    Article  Google Scholar 

  35. Zhang, Y.-Q.; Wei, X.-W.; Yu, R. Fe3O4 nanoparticlessupported palladium-bipyridine complex: Effective catalyst for Suzuki coupling reaction. Catal. Lett. 2010, 135, 256–262.

    Article  Google Scholar 

  36. Riani, P.; Napoletano, M.; Canepa, F. Synthesis, characterization and a.c. magnetic analysis of magnetite nanoparticles. J. Nanopart. Res. 2011, 13, 7013–7020.

    Article  Google Scholar 

  37. Nurdin, I.; Johan, M. R.; Yaacob, I. I.; Ang, B. C.; Andriyana, A. Synthesis, characterisation and stability of superparamagnetic maghemite nanoparticle suspension. Mater. Res. Innov. 2014, 18, S6-200–S6-203.

    Article  Google Scholar 

  38. Kluchove, K.; Zboril, R.; Tucek, J.; Pecova, M.; Zajoncova, L.; Safarik, I.; Mashlan, M.; Markova, I.; Jancik, D.; Sebela, M. et al. Superparamagnetic maghemite nanoparticles from solid-state synthesis—Their functionalization towards peroral MRI contrast agent and magnetic carrier for trypsin immobilization. Biomaterials 2009, 30, 2855–2863.

    Article  Google Scholar 

  39. Riani, P.; Lucchini, M. A.; Thea, S.; Alloisio, M.; Bertoni, G.; Canepa, F. New approach for the step by step control of magnetic nanostructure functionalization. Inorg. Chem. 2014, 53, 9166–9173.

    Article  Google Scholar 

  40. Latronico, T.; Depalo, N.; Valente, G.; Fanizza, E.; Laquintana, V.; Denora, N.; Fasano, A.; Striccoli, M.; Colella, M.; Agostiano, A. et al. Cytotoxicity study on luminescent nanocrystals containing phospholipid micelles in primary cultures of rat astrocytes. PLoS ONE 2016, 11, e0153451.

    Article  Google Scholar 

  41. Fang, C.; Kievit, F. M.; Veiseh, O.; Stephen, Z. R.; Wang, T. Z.; Lee, D.; Ellenbogen, R. G.; Zhang, M. Q. Fabrication of magnetic nanoparticles with controllable drug loading and release through a simple assembly approach. J. Control. Release 2012, 162, 233–241.

    Article  Google Scholar 

Download references

Acknowledgements

The University of Bari (Italy) and the Inter-University Consortium for Research on the Chemistry of Metal Ions in Biological Systems (C.I.R.C.M.S.B.) are gratefully acknowledged for their financial support. The work has been also supported by Nanomax-integrable sensors for pathological biomarkers diagnosis (N-CHEM) and NANOfotocatalizzatori per un’Atmosfera più PULita (NANOAPULIA) projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nunzio Denora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Depalo, N., Iacobazzi, R.M., Valente, G. et al. Sorafenib delivery nanoplatform based on superparamagnetic iron oxide nanoparticles magnetically targets hepatocellular carcinoma. Nano Res. 10, 2431–2448 (2017). https://doi.org/10.1007/s12274-017-1444-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1444-3

Keywords

Navigation