Skip to main content
Log in

Prolonged lifetime and enhanced separation of photogenerated charges of nanosized α-Fe2O3 by coupling SnO2 for efficient visible-light photocatalysis to convert CO2 and degrade acetaldehyde

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

To develop efficient visible-light photocatalysis on α-Fe2O3, it is highly desirable to promote visible-light-excited high-energy-level electron transfer to a proper energy platform thermodynamically. Herein, based on the transient-state surface photovoltage responses and the atmosphere-controlled steady-state surface photovoltage spectra, it is demonstrated that the lifetime and separation of photogenerated charges of nanosized α-Fe2O3 are increased after coupling a proper amount of nanocrystalline SnO2. This naturally leads to greatly improved photocatalytic activities for CO2 reduction and acetaldehyde degradation. It is suggested that the enhanced charge separation results from the electron transfer from α-Fe2O3 to SnO2, which acts as a proper energy platform. Based on the photocurrent action spectra, it is confirmed that the coupled SnO2 exhibits longer visible-light threshold wavelength (~590 nm) compared with the coupled TiO2 (~550 nm), indicating that the energy platform introduced by SnO2 would accept more photogenerated electrons from α-Fe2O3. Moreover, electrochemical reduction experiments proved that the coupled SnO2 possesses better catalytic ability for reducing CO2 and O2. These are well responsible for the much efficient photocatalysis on SnO2-coupled α-Fe2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sarkar, A.; Gracia-Espino, E.; Wågberg, T.; Shchukarev, A.; Mohl, M.; Rautio, A.-R.; Pitkänen, O.; Sharifi, T.; Kordas, K.; Mikkola, J. P. Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: Understanding the reduction pathway. Nano Res. 2016, 9, 1956–1968.

    Article  Google Scholar 

  2. Li, Y. W.; Chan, S. H.; Sun, Q. Heterogeneous catalytic conversion of CO2: A comprehensive theoretical review. Nanoscale 2015, 7, 8663–8683.

    Article  Google Scholar 

  3. Demeestere, K.; Dewulf, J.; Van Langenhove, H. Heterogeneous photocatalysis as an advanced oxidation process for the abatement of chlorinated, monocyclic aromatic and sulfurous volatile organic compounds in air: State of the art. Crit. Rev. Environ. Sci. Technol. 2007, 37, 489–538.

    Article  Google Scholar 

  4. Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244.

    Article  Google Scholar 

  5. Shen, S. H.; Lindley, S. A.; Chen, X. Y.; Zhang, J. Z. Hematite heterostructures for photoelectrochemical water splitting: Rational materials design and charge carrier dynamics. Energy Environ. Sci. 2016, 9, 2744–2775.

    Article  Google Scholar 

  6. Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z. X.; Tang, J. W. Visible-light driven heterojunction photocatalysts for water splitting—A critical review. Energy Environ. Sci. 2015, 8, 731–759.

    Article  Google Scholar 

  7. Mishra, M.; Chun, D. M. α-Fe2O3 as a photocatalytic material: A review. Appl. Catal. A: Gen. 2015, 498, 126–141.

    Article  Google Scholar 

  8. Li, Z. J.; Luan, Y. B.; Qu, Y.; Jing, L. Q. Modification strategies with inorganic acids for efficient photocatalysts by promoting the adsorption of O2. ACS Appl. Mater. Interfaces 2015, 7, 22727–22740.

    Article  Google Scholar 

  9. Marszewski, M.; Cao, S. W.; Yu, J. G.; Jaroniec, M. Semiconductor-based photocatalytic CO2 conversion. Mater. Horiz. 2015, 2, 261–278.

    Article  Google Scholar 

  10. Zhang, Q. F.; Uchaker, E.; Candelaria, S. L.; Cao, G. Z. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 2013, 42, 3127–3171.

    Article  Google Scholar 

  11. Singh, R. B.; Matsuzaki, H.; Suzuki, Y.; Seki, K.; Minegishi, T.; Hisatomi, T.; Domen, K.; Furube, A. Trapped state sensitive kinetics in LaTiO2N solid photocatalyst with and without cocatalyst loading. J. Am. Chem. Soc. 2014, 136, 17324–17331.

    Article  Google Scholar 

  12. Xie, M. Z.; Fu, X. D.; Jing, L. Q.; Luan, P.; Feng, Y. J.; Fu, H. G. Long-lived, visible-light-excited charge carriers of TiO2/BiVO4 nanocomposites and their unexpected photoactivity for water splitting. Adv. Energy Mater. 2014, 4, 1300995.

    Article  Google Scholar 

  13. Luan, P.; Xie, M. Z.; Liu, D. N.; Fu, X. D.; Jing, L. Q. Effective charge separation in the rutile TiO2 nanorod-coupled α-Fe2O3 with exceptionally high visible activities. Sci. Rep. 2014, 4, 6180.

    Article  Google Scholar 

  14. Nayak, A. K.; Ghosh, R.; Santra, S.; Guha, P. K.; Pradhan, D. Hierarchical nanostructured WO3-SnO2 for selective sensing of volatile organic compounds. Nanoscale 2015, 7, 12460–12473.

    Article  Google Scholar 

  15. Zhang, P.; Wang, L. J.; Zhang, X.; Shao, C. L.; Hu, J. H.; Shao, G. S. SnO2-core carbon-shell composite nanotubes with enhanced photocurrent and photocatalytic performance. Appl. Catal. B: Environ. 2015, 166–167, 193–201.

    Google Scholar 

  16. Li, K.; Zeng, X. Q.; Gao, S. M.; Ma, L.; Wang, Q. Y.; Xu, H.; Wang, Z. Y.; Huang, B. B.; Dai, Y.; Lu, J. Ultrasonic-assisted pyrolyzation fabrication of reduced SnO2–x/g-C3N4 heterojunctions: Enhance photoelectrochemical and photocatalytic activity under visible LED light irradiation. Nano Res. 2016, 9, 1969–1982.

    Article  Google Scholar 

  17. Thapa, A.; Zai, J. T.; Elbohy, H.; Poudel, P.; Adhikari, N.; Qian, X. F.; Qiao, Q. Q. TiO2 coated urchin-like SnO2 microspheres for efficient dye-sensitized solar cells. Nano Res. 2014, 7, 1154–1163.

    Article  Google Scholar 

  18. McCool, N. S.; Swierk, J. R.; Nemes, C. T.; Schmuttenmaer, C. A.; Mallouk, T. E. Dynamics of electron injection in SnO2/TiO2 core/shell electrodes for water-splitting dyesensitized photoelectrochemical cells. J. Phys. Chem. Lett. 2016, 7, 2930–2934.

    Article  Google Scholar 

  19. Zada, A.; Humayun, M.; Raziq, F.; Zhang, X. L.; Qu, Y.; Bai, L. L.; Qin, C. L.; Jing, L. Q.; Fu, H. G. Exceptional visible-light-driven cocatalyst-free photocatalytic activity of g-C3N4 by well designed nanocomposites with plasmonic Au and SnO2. Adv. Energy Mater. 2016, 6, 1601190.

    Article  Google Scholar 

  20. Wu, S. S.; Cao, H. Q.; Yin, S. F.; Liu, X. W.; Zhang, X. R. Amino acid-assisted hydrothermal synthesis and photocatalysis of SnO2 nanocrystals. J. Phys. Chem. C 2009, 113, 17893–17898.

    Article  Google Scholar 

  21. Peng, L. L.; Xie, T. F.; Lu, Y. C.; Fan, H. M.; Wang, D. J. Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts. Phys. Chem. Chem. Phys. 2010, 12, 8033–8041.

    Article  Google Scholar 

  22. Pan, Y. X.; Sun, Z. Q.; Cong, H. P.; Men, Y. L.; Xin, S.; Song, J.; Yu, S. H. Photocatalytic CO2 reduction highly enhanced by oxygen vacancies on Pt-nanoparticle-dispersed gallium oxide. Nano Res. 2016, 9, 1689–1700.

    Article  Google Scholar 

  23. Jing, L. Q.; Zhou, W.; Tian, G. H.; Fu, H. G. Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chem. Soc. Rev. 2013, 42, 9509–9549.

    Article  Google Scholar 

  24. Yang, D. J.; Liu, H. W.; Zheng, Z. F.; Yuan, Y.; Zhao, J. C.; Waclawik, E. R.; Ke, X. B.; Zhu, H. Y. An efficient photocatalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals. J. Am. Chem. Soc. 2009, 131, 17885–17893.

    Article  Google Scholar 

  25. Wang, J. J.; Huang, J.; Meng, J.; Li, Q. X.; Yang, J. L. Double-hole codoped huge-gap semiconductor ZrO2 for visible-light photocatalysis. Phys. Chem. Chem. Phys. 2016, 18, 17517–17524.

    Article  Google Scholar 

  26. Zhang, X.; Zhang, L. Z.; Xie, T. F.; Wang, D. J. Lowtemperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. J. Phys. Chem. C 2009, 113, 7371–7378.

    Article  Google Scholar 

  27. Zang, Y. P.; Li, L. P.; Li, X. G.; Lin, R.; Li, G. S. Synergistic collaboration of g-C3N4/SnO2 composites for enhanced visible-light photocatalytic activity. Chem. Eng. J. 2014, 246, 277–286.

    Article  Google Scholar 

  28. Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758.

    Article  Google Scholar 

  29. Tu, W. G.; Zhou, Y.; Zou, Z. G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 2014, 26, 4607–4626.

    Article  Google Scholar 

  30. Nie, Y.; Li, L.; Wei, Z. D. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 2015, 44, 2168–2201.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (Nos. U1401245 and 21501052), the National Basic Research Program of China (No. 2014CB660814), the Project of Chinese Ministry of Education (No. 213011A), Special Funding for Postdoctoral of Heilongjiang Province (No. LBHTZ06019) and the Science Foundation for Excellent Youth of Harbin City of China (No. 2014RFYXJ002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Qu or Liqiang Jing.

Electronic supplementary material

12274_2017_1427_MOESM1_ESM.pdf

Prolonged lifetime and enhanced separation of photogenerated charges of nanosized α-Fe2O3 by coupling SnO2 for efficient visible-light photocatalysis to convert CO2 and degrade acetaldehyde

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Luan, P., Zhang, X. et al. Prolonged lifetime and enhanced separation of photogenerated charges of nanosized α-Fe2O3 by coupling SnO2 for efficient visible-light photocatalysis to convert CO2 and degrade acetaldehyde. Nano Res. 10, 2321–2331 (2017). https://doi.org/10.1007/s12274-017-1427-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1427-4

Keywords

Navigation