Skip to main content
Log in

Functionalized periodic Au@MOFs nanoparticle arrays as biosensors for dual-channel detection through the complementary effect of SPR and diffraction peaks

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A facile and low-cost method to prepare periodic Au@metal–organic framework (MOF) (MIL-100(Fe)) nanoparticle arrays was developed. The arrays were fabricated in situ using monolayer colloidal crystals as templates, followed by Au deposition on substrates, and annealing. MIL-100(Fe) coatings were applied on the nanospheres using a simple solvent thermal process. The prepared periodic Au@MIL-100(Fe) nanoparticle (NP) arrays were characterized by two peaks in the visible spectra. The first peak represented the surface plasmon resonance (SPR) of the Au nanospheres, and the other peak, or the diffraction peak, originated from the periodic structure in the NP array. After modification with 3-aminophenylboronic acid hemisulfate (PBA), the Au@MIL-100(Fe) NP arrays exhibited sensitive responses to different glucose concentrations with good selectivity. These responses could be due to the strong interaction between PBA and glucose molecules. The diffraction peak was sensitive at low glucose concentrations (less than 12 mM), whereas the SPR peak rapidly responded at high concentrations. The peaks thus demonstrated satisfactory complementary sensitivity for glucose detection in different concentration regions. These results can be used to develop a dual-channel biosensor. We also created a standard diagram, which can be used to efficiently monitor blood glucose levels. The proposed strategy can be extended to develop different dual-channel sensors using Au@MIL-100(Fe) NP arrays functionalized with different recognition agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Som, T.; Karmakar, B. Core-shell Au-Ag nanoparticles in dielectric nanocomposites with plasmon-enhanced fluorescence: A new paradigm in antimony glasses. Nano Res. 2009, 2, 607–616.

    Article  Google Scholar 

  2. Li, P.; Wei, Z.; Wu, T.; Peng, Q.; Li, Y. D. Au-ZnO hybrid nanopyramids and their photocatalytic properties. J. Am. Chem. Soc. 2011, 133, 5660–5663.

    Article  Google Scholar 

  3. Park, B.; Kim, S. J.; Sohn, J. S.; Nam, M. S.; Kang, S.; Jun, S. C. Surface plasmon enhancement of photoluminescence in photo-chemically synthesized graphene quantum dot and Au nanosphere. Nano Res. 2016, 9, 1866–1875.

    Article  Google Scholar 

  4. Ding, D. W.; Liu, K.; He, S. N.; Gao, C. B.; Yin, Y. D. Ligand-exchange assisted formation of Au/TiO2 schottky contact for visible-light photocatalysis. Nano Lett. 2014, 14, 6731–6736.

    Article  Google Scholar 

  5. Liu, H. P.; Liu, T. Z.; Zhang, L.; Han, L.; Gao, C. B.; Yin, Y. D. Etching-free epitaxial growth of gold on silver nanostructures for high chemical stability and plasmonic activity. Adv. Funct. Mater. 2015, 25, 5435–5443.

    Article  Google Scholar 

  6. Li, C. C.; Shuford, K. L.; Chen, M. H.; Lee, E. J.; Cho, S. O. A facile polyol route to uniform gold octahedra with tailorable size and their optical properties. ACS Nano 2008, 2, 1760–1769.

    Article  Google Scholar 

  7. Liu, D. L.; Zhou, F.; Li, C. C.; Zhang, T.; Zhang, H. H.; Cai, W. P.; Li, Y. Black gold: Plasmonic colloidosomes with broadband absorption self-assembled from monodispersed gold nanospheres by using a reverse emulsion system. Angew. Chem., Int. Ed. 2015, 54, 9596–9600.

    Article  Google Scholar 

  8. Zhou, Q.; Yang, Y.; Ni, J.; Li, Z. C.; Zhang, Z. J. Rapid recognition of isomers of monochlorobiphenyls at trace levels by surface-enhanced Raman scattering using Ag nanorods as a substrate. Nano Res. 2010, 3, 423–428.

    Article  Google Scholar 

  9. Luo, M.; Ruditskiy, A.; Peng, H. C.; Tao, J.; Figueroa- Cosme, L.; He, Z. K.; Xia, Y. N. Penta-twinned copper nanorods: Facile synthesis via seed-mediated growth and their tunable plasmonic properties. Adv. Funct. Mater. 2016, 26, 1209–1216.

    Article  Google Scholar 

  10. Pyykkö, P. Theoretical chemistry of gold. III. Chem. Soc. Rev. 2008, 37, 1967–1997.

    Article  Google Scholar 

  11. Dodson, S. L.; Cao, C.; Zaribafzadeh, H.; Li, S. Z.; Xiong, Q. H. Engineering plasmonic nanorod arrays for colon cancer marker detection. Biosens. Bioelectron. 2015, 63, 472–477.

    Article  Google Scholar 

  12. Xue, B.; Chen, P.; Hong, Q.; Lin, J. Y.; Tan, K. L. Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes. J. Mater. Chem. 2001, 11, 2378–2381.

    Article  Google Scholar 

  13. Qian, L. H.; Mookherjee, R. Convective assembly of linear gold nanoparticle arrays at the micron scale for surface enhanced Raman scattering. Nano Res. 2011, 4, 1117–1128.

    Article  Google Scholar 

  14. Ruditskiy, A.; Xia, Y. N. Toward the synthesis of sub-15 nm Ag nanocubes with sharp corners and edges: The roles of heterogeneous nucleation and surface capping. J. Am. Chem. Soc. 2016, 138, 3161–3167.

    Article  Google Scholar 

  15. Men, D. D.; Zhou, F.; Hang, L. F.; Li, X. Y.; Duan, G. T.; Cai, W. P.; Li, Y. A functional hydrogel film attached with a 2D Au nanosphere array and its ultrahigh optical diffraction intensity as a visualized sensor. J. Mater. Chem. C 2016, 4, 2117–2122.

    Article  Google Scholar 

  16. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.

    Article  Google Scholar 

  17. Zhou, F.; Liu, Y.; Cai, W. P. Huge local electric field enhancement in hybrid plasmonic arrays. Opt. Lett. 2014, 39, 1302–1305.

    Article  Google Scholar 

  18. Meek, S. T.; Greathouse, J. A.; Allendorf, M. D. Metalorganic frameworks: A rapidly growing class of versatile nanoporous materials. Adv. Mater. 2011, 23, 249–267.

    Article  Google Scholar 

  19. He, K.; Cao, Z.; Liu, R. R.; Miao, Y.; Ma, H. Y.; Ding, Y. In situ decomposition of metal-organic frameworks into ultrathin nanosheets for the oxygen evolution reaction. Nano Res. 2016, 9, 1856–1865.

    Article  Google Scholar 

  20. Li, H. L.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279.

    Article  Google Scholar 

  21. Kitagawa, S.; Kitaura, R.; Noro, S. I. Functional porous coordination polymers. Angew. Chem., Int. Ed. 2004, 43, 2334–2375.

    Article  Google Scholar 

  22. Zhang, L.; Wu, H. B.; Lou, X. W. Metal–organicframeworks- derived general formation of hollow structures with high complexity. J. Am. Chem. Soc. 2013, 135, 10664–10672.

    Article  Google Scholar 

  23. Zhang, W.; Hu, Y. L.; Ge, J.; Jiang, H. L.; Yu, S. H. A facile and general coating approach to moisture/waterresistant metal–organic frameworks with intact porosity. J. Am. Chem. Soc. 2014, 136, 16978–16981.

    Article  Google Scholar 

  24. D’Alessandro, D. M.; Smit, B.; Long, J. R. Carbon dioxide capture: Prospects for new materials. Angew. Chem., Int. Ed. 2010, 49, 6058–6082.

    Article  Google Scholar 

  25. Li, J. R.; Yu, J. M.; Lu, W. G.; Sun, L. B.; Sculley, J.; Balbuena, P. B.; Zhou, H. C. Porous materials with predesigned single-molecule traps for CO2 selective adsorption. Nat. Commun. 2013, 4, 1538–1544.

    Article  Google Scholar 

  26. Zhang, B.; Asakura, H.; Zhang, J.; Zhang, J. G.; De, S.; Yan, N. Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew. Chem., Int. Ed. 2016, 55, 8319–8323.

    Article  Google Scholar 

  27. Liu, Y.; Xuan, W. M.; Cui, Y. Engineering homochiral metalorganic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv. Mater. 2010, 22, 4112–4135.

    Article  Google Scholar 

  28. Sadakiyo, M.; Yamada, T.; Kitagawa, H. Rational designs for highly proton-conductive metal-organic frameworks. J. Am. Chem. Soc. 2009, 131, 9906–9907.

    Article  Google Scholar 

  29. Rowsell, J. L. C.; Millward, A. R.; Park, K. S.; Yaghi, O. M. Hydrogen sorption in functionalized metal-organic frameworks. J. Am. Chem. Soc. 2004, 126, 5666–5667.

    Article  Google Scholar 

  30. Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bi-functional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

    Google Scholar 

  31. Tang, J.; Salunkhe, R. R.; Liu, J.; Torad, N. L.; Imura, M.; Furukawa, S.; Yamauch, Y. Thermal conversion of core-shell metal-organic frameworks: A new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 2015, 137, 1572–1580.

    Article  Google Scholar 

  32. He, L. C.; Liu, Y.; Liu, J. Z.; Xiong, Y. S.; Zheng, J. Z.; Liu, Y. L.; Tang, Z. Y. Core-shell noble-metal@metal-organicframework nanoparticles with highly selective sensing property. Angew. Chem., Int. Ed. 2013, 52, 3741–3745.

    Article  Google Scholar 

  33. Zhou, J. J.; Wang, P.; Wang, C. X.; Goh, Y. T.; Fang, Z.; Messersmith, P. B.; Duan, H. W. Versatile core–shell nanoparticle@metal–organic framework nanohybrids: Exploiting mussel-inspired polydopamine for tailored structural integration. ACS Nano 2015, 9, 6951–6960.

    Article  Google Scholar 

  34. Li, L. M.; Jiao, X. L.; Chen, D. R.; Lotsch, B. V.; Li, C. Facile fabrication of ultrathin metal-organic frameworkcoated monolayer colloidal crystals for highly efficient vapor sensing. Chem. Mater. 2015, 27, 7601–7609.

    Article  Google Scholar 

  35. Cai, J. G.; Ye, J. F.; Chen, S. Y.; Zhao, X. W.; Zhang, D. Y.; Chen, S.; Ma, Y. R.; Jin, S.; Qi, L. M. Self-cleaning, broadband and quasi-omnidirectional antireflective structures based on mesocrystalline rutile TiO2 nanorod arrays. Energy Environ. Sci. 2012, 5, 7575–7581.

    Article  Google Scholar 

  36. Kleinman, S. L.; Sharma, B.; Blaber, M. G.; Henry, A. I.; Valley, N.; Freeman, R. G.; Natan, M. J.; Schatz, G. C.; Van Duyne, R. P. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced raman excitation spectroscopy. J. Am. Chem. Soc. 2013, 135, 301–308.

    Article  Google Scholar 

  37. Liu, B.; Wang, D. Y. High-throughput transformation of colloidal polymer spheres to discs simply via magnetic stirring of their dispersions. Langmuir 2012, 28, 6436–6440.

    Article  Google Scholar 

  38. Liu, Y. D.; Goebl, J.; Yin, Y. D. Templated synthesis of nanostructured materials. Chem. Soc. Rev. 2013, 42, 2610–2653.

    Article  Google Scholar 

  39. Li, Y.; Koshizaki, N.; Cai, W. P. Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices. Coord. Chem. Rev. 2011, 255, 357–373.

    Article  Google Scholar 

  40. Li, Y.; Duan, G. T.; Liu, G. Q.; Cai, W. P. Physical processes-aided periodic micro/nanostructured arrays by colloidal template technique: Fabrication and applications. Chem. Soc. Rev. 2013, 42, 3614–3627.

    Article  Google Scholar 

  41. Cong, H. L.; Yu, B.; Tang, J. G.; Li, Z. J.; Liu, X. S. Current status and future developments in preparation and application of colloidal crystals. Chem. Soc. Rev. 2013, 42, 7774–7800.

    Article  Google Scholar 

  42. Zhu, D. F.; Huang, H.; Zhang, G.; Zhang, X.; Li, X.; Zhang, X. M.; Wang, T. Q.; Yang, B. Fabrication of heterogeneous double-ring-like structure arrays by combination of colloidal lithography and controllable dewetting. Langmuir 2012, 28, 2873–2880.

    Article  Google Scholar 

  43. Hang, L. F.; Zhao, Y.; Zhang, H. H.; Liu, G. Q.; Cai, W. P.; Li, Y.; Qu, L. T. Copper nanoparticle@graphene composite arrays and their enhanced catalytic performance. Acta. Mater. 2016, 105, 59–67.

    Article  Google Scholar 

  44. Mikrajuddin Iskandar, F.; Okuyanma, K. Single route for producing organized metallic domes, dots, and pores by colloidal templating and over-sputtering. Adv. Mater. 2002, 14, 930–933.

    Article  Google Scholar 

  45. Férey, G.; Serre, C.; Mellot-Draznieks, C.; Millange, F.; Surblé, S.; Dutour, J.; Margiolaki, I. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angew. Chem., Int. Ed. 2004, 116, 6456–6461.

    Article  Google Scholar 

  46. Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042.

    Article  Google Scholar 

  47. Bhattachaijee, S.; Yang, D. A.; Ahn, W. S. A new heterogeneous catalyst for epoxidation of alkenesvia one-step postfunctionalization of IRMOF-3 with a manganese(II) acetylacetonate complex. Chem. Commun. 2011, 47, 3637–3639.

    Article  Google Scholar 

  48. Wu, C. D.; Hu, A. G.; Zhang, L.; Lin, W. B. A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 2005, 127, 8940–8941.

    Article  Google Scholar 

  49. Dai, Z. F.; Li, Y.; Duan, G. T.; Jia, L. C.; Cai, W. P. Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface. ACS Nano 2012, 6, 6706–6716.

    Article  Google Scholar 

  50. Zhang, H. H.; Liu, M.; Zhou, F.; Liu, D. L.; Liu, G. Q.; Duan, G. T.; Cai, W. P.; Li, Y. Physical deposition improved SERS stability of morphology controlled periodic micro/nanostructured arrays based on colloidal templates. Small 2015, 11, 844–853.

    Article  Google Scholar 

  51. Zhang, C. J.; Losego, M. D.; Braun, P. V. Hydrogel-based glucose sensors: Effects of phenylboronic acid chemical structure on response. Chem. Mater. 2013, 25, 3239–3250.

    Article  Google Scholar 

  52. Zhang, Y. J.; Guan, Y.; Zhou, S. Q. Synthesis and volume phase transitions of glucose-sensitive microgels. Biomacromolecules 2006, 7, 3196–3201.

    Article  Google Scholar 

  53. Updike, S. J.; Hicks, G. P. The enzyme electrode. Nature 1967, 214, 986–988.

    Article  Google Scholar 

  54. Shafer-Peltier, K. E.; Haynes, C. L.; Glucksberg, M. R.; Van Duyne, R. P. Toward a glucose biosensor based on surface-enhanced Raman scattering. J. Am. Chem. Soc. 2003, 125, 588–593.

    Article  Google Scholar 

  55. Matsui, J.; Akamatsu, K.; Hara, N.; Miyoshi, D.; Nawafune, H.; Tamaki, K.; Sugimoto, N. SPR sensor chip for detection of small molecules using molecularly imprinted polymer with embedded gold nanoparticles. Anal. Chem. 2005, 77, 4282–4285.

    Article  Google Scholar 

  56. ToghilI, K. E.; Compton, R. G. Electrochemical nonenzymatic glucose sensors: A perspective and an evaluation. Int. J. Electrochem. Sci. 2010, 5, 1246–1301.

    Google Scholar 

  57. Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310–316.

    Article  Google Scholar 

  58. Gu, Z. Z.; Horie, R.; Kubo, S.; Yamada, Y.; Fujishima, A.; Sato, O. Fabrication of a metal-coated three-dimensionally ordered macroporous film and its application as a refractive index sensor. Angew. Chem., Int. Ed. 2002, 41, 1153–1156.

    Article  Google Scholar 

  59. Palik, E. D. Handbook of Optical Constants of Solids; Academic Press: New York, 1997.

    Google Scholar 

  60. Kanai, T.; Sawada, T.; Kitamura K. Optical determination of the lattice constants of colloidal crystals without use of the refractive index. Langmuir 2003, 19, 1984–1986.

    Article  Google Scholar 

  61. Li, J. L.; Zheng, T. S. A comparison of chemical sensors based on the different ordered inverse opal films. Sensor. Actuat. B-Chem. 2008, 131, 190–195.

    Article  Google Scholar 

  62. Lu, G.; Hupp, J. T. Metal-organic frameworks as sensors: A ZIF-8 based Fabry-Pérot device as a selective sensor for chemical vapors and gases. J. Am. Chem. Soc. 2010, 132, 7832–7833.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Basic Research Program of China (No. 2012CB932303), the National Natural Science Foundation of China (Nos. 51371165 and 51571189), the State Key Program of National Natural Science Foundation of China (No. 51531006), the Anhui Provincial Natural Science Foundation (No. 1508085JGD07), the Cross-disciplinary Collaborative Teams Program in CAS, and the CAS/SAFEA International Partnership Program for Creative Research Teams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Li.

Electronic supplementary material

12274_2016_1414_MOESM1_ESM.pdf

Functionalized periodic Au@MOFs nanoparticle arrays as biosensors for dual-channel detection through the complementary effect of SPR and diffraction peaks

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hang, L., Zhou, F., Men, D. et al. Functionalized periodic Au@MOFs nanoparticle arrays as biosensors for dual-channel detection through the complementary effect of SPR and diffraction peaks. Nano Res. 10, 2257–2270 (2017). https://doi.org/10.1007/s12274-016-1414-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1414-1

Keywords

Navigation