Skip to main content
Log in

Microwave-assisted synthesis of ultrafine Au nanoparticles immobilized on MOF-199 in high loading as efficient catalysts for a three-component coupling reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Controlled integration of ultrafine metal nanoparticles (MNPs) and metal–organic frameworks (MOFs) has drawn much attention due to their unique physical and chemical properties. However, the development of a one-step strategy for preparing ultrafine MNPs within MOFs still remains a great challenge. Herein, a facile synthetic approach toward the abovementioned composites was developed. In contrast to the conventional approach, these hybrids were prepared by the direct mixing of metal and MOF precursors in the reaction solution assisted by microwave irradiation. Impressively, the Au/MOF-199 composite with uniformly distributed ultrafine Au nanoparticles could be fabricated in only two minutes, and the Au loading could be increased up to a level of 5.13%. The multifunctional Au/MOF-199 catalysts exhibited high turnover numbers (TONs) and turnover frequencies (TOFs) in the three-component coupling reaction of formaldehyde, phenylacetylene, and piperidine (A3-coupling). Owing to the confinement effect of MOF-199, the 5.13%Au/MOF-199 catalyst could be recycled for five runs without serious loss of activity, with no obvious aggregation of Au NPs detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Astruc, D.; Lu, F.; Aranzaes, J. R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem., Int. Ed. 2005, 44, 7852–7872.

    Article  Google Scholar 

  2. Gao, C. B.; Lu, Z. D.; Liu, Y.; Zhang, Q.; Chi, M. F.; Cheng, Q.; Yin, Y. D. Highly stable silver nanoplates for surface plasmon resonance biosensing. Angew. Chem., Int. Ed. 2012, 51, 5629–5633.

    Article  Google Scholar 

  3. Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102.

    Article  Google Scholar 

  4. Li, J.; Li, X.; Zhai, H.-J.; Wang, L.-S. Au20: A tetrahedral cluster. Science 2003, 299, 864–867.

    Article  Google Scholar 

  5. Sinha, A. K.; Seelan, S.; Okumura, M.; Akita, T.; Tsubota, S.; Haruta, M. Three-dimensional mesoporous titanosilicates prepared by modified sol-gel method: Ideal gold catalyst supports for enhanced propene epoxidation. J. Phys. Chem. B 2005, 109, 3956–3965.

    Article  Google Scholar 

  6. Hayashi, T.; Tanaka, K.; Haruta, M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J. Catal. 1998, 178, 566–575.

    Article  Google Scholar 

  7. Haruta, M. When gold is not noble: Catalysis by nanoparticles. Chem. Rec. 2003, 3, 75–87.

    Article  Google Scholar 

  8. Schmid, G.; Liu, Y.-P.; Schumann, M.; Raschke, T.; Radehaus, C. Quasi one-dimensional arrangements of Au55(PPh3)12Cl6 clusters and their electrical properties at room temperature. Nano Lett. 2001, 1, 405–407.

    Article  Google Scholar 

  9. Tsunoyama, H.; Tsukuda, T. Magic numbers of gold clusters stabilized by PVP. J. Am. Chem. Soc. 2009, 131, 18216–18217.

    Article  Google Scholar 

  10. Liu, X. Y.; Wang, A. Q.; Wang, X. D.; Mou, C.-Y.; Zhang, T. Au–Cu alloy nanoparticles confined in SBA-15 as a highly efficient catalyst for CO oxidation. Chem. Commun. 2008, 3187–3189.

    Google Scholar 

  11. Shekhar, M.; Wang, J.; Lee, W.-S.; Williams, W. D.; Kim, S. M.; Stach, E. A.; Miller, J. T.; Delgass, W. N.; Ribeiro, F. H. Size and support effects for the water–gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2. J. Am. Chem. Soc. 2012, 134, 4700–4708.

    Article  Google Scholar 

  12. Lin, J.; Qiao, B. T.; Liu, J. Y.; Huang, Y. Q.; Wang, A. Q.; Li, L.; Zhang, W. S.; Allard, L. F.; Wang, X. D.; Zhang, T. Design of a highly active Ir/Fe(OH)x catalyst: Versatile application of Pt-group metals for the preferential oxidation of carbon monoxide. Angew. Chem., Int. Ed. 2012, 51, 2920–2924.

    Article  Google Scholar 

  13. Zhang, X.; Corma, A. Supported gold(III) catalysts for highly efficient three-component coupling reactions. Angew. Chem., Int. Ed. 2008, 120, 4430–4433.

    Article  Google Scholar 

  14. Qiao, B. T.; Liang, J.-X.; Wang, A. Q.; Xu, C.-Q.; Li, J.; Zhang, T.; Liu, J. J. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res. 2015, 8, 2913–2924.

    Article  Google Scholar 

  15. Li, Q. L.; Zhang, Y. H.; Chen, G. X.; Fan, J. Q.; Lan, H. Q.; Yang, Y. Q. Ultra-low-gold loading Au/CeO2 catalysts for ambient temperature CO oxidation: Effect of preparation conditions on surface composition and activity. J. Catal. 2010, 273, 167–176.

    Article  Google Scholar 

  16. Gan, Y. J.; Sun, L. T.; Banhart, F. One- and two-dimensional diffusion of metal atoms in graphene. Small 2008, 4, 587–591.

    Article  Google Scholar 

  17. Huang, Y.-B.; Wang, Q.; Liang, J.; Wang, X. S.; Cao, R. Soluble metal-nanoparticle-decorated porous coordination polymers for the homogenization of heterogeneous catalysis. J. Am. Chem. Soc. 2016, 138, 10104–10107.

    Article  Google Scholar 

  18. Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 2008, 37, 191–214.

    Article  Google Scholar 

  19. Long, J. R.; Yaghi, O. M. The pervasive chemistry of metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1213–1214.

    Article  Google Scholar 

  20. Bae, Y. S.; Snurr, R. Q. Development and evaluation of porous materials for carbon dioxide separation and capture. Angew. Chem., Int. Ed. 2011, 50, 11586–11596.

    Article  Google Scholar 

  21. Getman, R. B.; Bae, Y.-S.; Wilmer, C. E.; Snurr, R. Q. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal–organic frameworks. Chem. Rev. 2012, 112, 703–723.

    Article  Google Scholar 

  22. Li, J.-R.; Sculley, J.; Zhou, H.-C. Metal–organic frameworks for separations. Chem. Rev. 2012, 112, 869–932.

    Article  Google Scholar 

  23. Dhakshinamoorthy, A.; Garcia, H. Metal–organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. Chem. Soc. Rev. 2014, 43, 5750–5765.

    Article  Google Scholar 

  24. Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N. A.; Balas, F.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 2008, 130, 6774–6780.

    Article  Google Scholar 

  25. White, K. A.; Chengelis, D. A.; Gogick, K. A.; Stehman, J.; Rosi, N. L.; Petoud, S. Near-infrared luminescent lanthanide MOF barcodes. J. Am. Chem. Soc. 2009, 131, 18069–18071.

    Article  Google Scholar 

  26. Jiang, H.-L.; Xu, Q. Porous metal–organic frameworks as platforms for functional applications. Chem. Commun. 2011, 47, 3351–3370.

    Article  Google Scholar 

  27. Yang, Q. H.; Xu, Q.; Yu, S. H.; Jiang, H. L. Pd nanocubes@ZIF-8: Integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem., Int. Ed. 2016, 128, 3749–3753.

    Article  Google Scholar 

  28. Xiao, J. D.; Shang, Q. C.; Xiong, Y. J.; Zhang, Q.; Luo, Y.; Yu, S. H.; Jiang, H. L. Boosting photocatalytic hydrogen production of a metal–organic framework decorated with platinum nanoparticles: The platinum location matters. Angew. Chem., Int. Ed. 2016, 128, 9535–9539.

    Article  Google Scholar 

  29. Hermes, S.; Schröter, M. K.; Schmid, R.; Khodeir, L.; Muhler, M.; Tissler, A.; Fischer, R. W.; Fischer, R. A. Metal@MOF: Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew. Chem., Int. Ed. 2005, 44, 6237–6241.

    Article  Google Scholar 

  30. Schröder, F.; Esken, D.; Cokoja, M.; van den Berg, M. W. E.; Lebedev, O. I.; Van Tendeloo, G.; Walaszek, B.; Buntkowsky, G.; Limbach, H.-H.; Chaudret, B. et al. Ruthenium nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]: A solid-state reference system for surfactant-stabilized ruthenium colloids. J. Am. Chem. Soc. 2008, 130, 6119–6130.

    Article  Google Scholar 

  31. Ishida, T.; Kawakita, N.; Akita, T.; Haruta, M. One-pot N-alkylation of primary amines to secondary amines by gold clusters supported on porous coordination polymers. Gold Bull. 2009, 42, 267–274.

    Article  Google Scholar 

  32. Ishida, T.; Nagaoka, M.; Akita, T.; Haruta, M. Deposition of gold clusters on porous coordination polymers by solid grinding and their catalytic activity in aerobic oxidation of alcohols. Chem.—Eur. J. 2008, 14, 8456–8460.

    Article  Google Scholar 

  33. Jiang, H.-L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal−organic framework. J. Am. Chem. Soc. 2009, 131, 11302–11303.

    Article  Google Scholar 

  34. Zlotea, C.; Campesi, R.; Cuevas, F.; Leroy, E.; Dibandjo, P.; Volkringer, C.; Loiseau, T.; Férey, G.; Latroche, M. Pd nanoparticles embedded into a metal-organic framework: Synthesis, structural characteristics, and hydrogen sorption properties. J. Am. Chem. Soc. 2010, 132, 2991–2997.

    Article  Google Scholar 

  35. Jiang, H.-L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal−organic framework. J. Am. Chem. Soc. 2011, 133, 1304–1306.

    Article  Google Scholar 

  36. Chui, S. S.-Y.; Lo, S. M.-F.; Charmant, J. P.; Orpen, A. G.; Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148–1150.

    Article  Google Scholar 

  37. Liu, L. L.; Zhang, X.; Gao, J. S.; Xu, C. M. Engineering metal–organic frameworks immobilize gold catalysts for highly efficient one-pot synthesis of propargylamines. Green Chem. 2012, 14, 1710–1720.

    Article  Google Scholar 

  38. Dahal, N.; García, S.; Zhou, J. P.; Humphrey, S. M. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis. ACS Nano 2012, 6, 9433–9446.

    Article  Google Scholar 

  39. García, S.; Anderson, R. M.; Celio, H.; Dahal, N.; Dolocan, A.; Zhou, J. P.; Humphrey, S. M. Microwave synthesis of Au–Rh core–shell nanoparticles and implications of the shell thickness in hydrogenation catalysis. Chem. Commun. 2013, 49, 4241–4243.

    Article  Google Scholar 

  40. Lu, C.-M.; Liu, J.; Xiao, K. F.; Harris, A. T. Microwave enhanced synthesis of MOF-5 and its CO2 capture ability at moderate temperatures across multiple capture and release cycles. Chem. Eng. J. 2010, 156, 465–470.

    Article  Google Scholar 

  41. Choi, J.-S.; Son, W.-J.; Kim, J.; Ahn, W.-S. Metal–organic framework MOF-5 prepared by microwave heating: Factors to be considered. Micropor. Mesopor. Mater. 2008, 116, 727–731.

    Article  Google Scholar 

  42. Zhu, W.; Liu, P. J.; Xiao, S. N.; Wang, W. C.; Zhang, D. Q.; Li, H. X. Microwave-assisted synthesis of Ag-doped MOFslike organotitanium polymer with high activity in visiblelight driven photocatalytic NO oxidization. Appl. Catal. B 2015, 172–173, 46–51.

    Article  Google Scholar 

  43. Bag, P. P.; Wang, X.-S.; Cao, R. Microwave-assisted large scale synthesis of lanthanide metal–organic frameworks (Ln-MOFs), having a preferred conformation and photoluminescence properties. Dalton Trans. 2015, 44, 11954–11962.

    Article  Google Scholar 

  44. Huang, Y.-B.; Shen, M.; Wang, X. S.; Shi, P.-C.; Li, H. F.; Cao, R. Hierarchically micro-and mesoporous metal–organic framework-supported alloy nanocrystals as bifunctional catalysts: Toward cooperative catalysis. J. Catal. 2015, 330, 452–457.

    Article  Google Scholar 

  45. Huang, Y.-B.; Shen, M.; Wang, X. S.; Huang, P.; Chen, R. P.; Lin, Z.-J.; Cao, R. Water-medium C–H activation over a hydrophobic perfluoroalkane-decorated metal-organic framework platform. J. Catal. 2016, 333, 1–7.

    Article  Google Scholar 

  46. Casaletto, M. P.; Longo, A.; Martorana, A.; Prestianni, A.; Venezia, A. M. XPS study of supported gold catalysts: The role of Au0 and Au species as active sites. Surf. Interface Anal. 2006, 38, 215–218.

    Article  Google Scholar 

  47. Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310–316.

    Article  Google Scholar 

  48. Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851.

    Article  Google Scholar 

  49. Pastoriza-Santos, I.; Liz-Marzán, L. M. N, N-dimethylformamide as a reaction medium for metal nanoparticle synthesis. Adv. Funct. Mater. 2009, 19, 679–688.

    Article  Google Scholar 

  50. Pearson, R. G. Hard and soft acids and bases, HSAB, part 1: Fundamental principles. J. Chem. Educ. 1968, 45, 581–587.

    Article  Google Scholar 

  51. Nag, A.; Kovalenko, M. V.; Lee, J.-S.; Liu, W. Y.; Spokoyny, B.; Talapin, D. V. Metal-free inorganic ligands for colloidal nanocrystals: S2−, HS, Se2−, HSe, Te2−, The, TeS3 2−, OH, and NH2 as surface ligands. J. Am. Chem. Soc. 2011, 133, 10612–10620.

    Article  Google Scholar 

  52. Yen, B. K. H.; Günther, A.; Schmidt, M. A.; Jensen, K. F.; Bawendi, M. G. A microfabricated gas–liquid segmented flow reactor for high-temperature synthesis: The case of CdSe quantum dots. Angew. Chem., Int. Ed. 2005, 117, 5583–5587.

    Article  Google Scholar 

  53. Yoo, Y.; Jeong, H.-K. Rapid fabrication of metal organic framework thin films using microwave-induced thermal deposition. Chem. Commun. 2008, 2441–2443.

    Google Scholar 

  54. Groisman, Y.; Gedanken, A. Continuous flow, circulating microwave system and its application in nanoparticle fabrication and biodiesel synthesis. J. Phys. Chem. C 2008, 112, 8802–8808.

    Article  Google Scholar 

  55. Ni, Z.; Masel, R. I. Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 2006, 128, 12394–12395.

    Article  Google Scholar 

  56. Baghbanzadeh, M.; Carbone, L.; Cozzoli, P. D.; Kappe, C. O. Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew. Chem., Int. Ed. 2011, 50, 11312–11359.

    Article  Google Scholar 

  57. Boulton, A. A.; Davis, B. A.; Durden, D. A.; Dyck, L. E.; Juorio, A. V.; Li, X. M.; Paterson, I. A.; Yu, P. H. Aliphatic propargylamines: New antiapoptotic drugs. Drug Dev. Res. 1997, 42, 150–156.

    Article  Google Scholar 

  58. Naota, T.; Takaya, H.; Murahashi, S.-I. Ruthenium-catalyzed reactions for organic synthesis. Chem. Rev. 1998, 98, 2599–2660.

    Article  Google Scholar 

  59. Kidwai, M.; Bansal, V.; Kumar, A.; Mozumdar, S. The first Au-nanoparticles catalyzed green synthesis of propargylamines via a three-component coupling reaction of aldehyde, alkyne and amine. Green Chem. 2007, 9, 742–745.

    Article  Google Scholar 

  60. Wei, C. M.; Li, C.-J. A highly efficient three-component coupling of aldehyde, alkyne, and amines via C–H activation catalyzed by gold in water. J. Am. Chem. Soc. 2003, 125, 9584–9585.

    Article  Google Scholar 

  61. Liu, X.-Y.; Li, C.-H.; Che, C.-M. Phosphine gold(I)-catalyzed hydroamination of alkenes under thermal and microwave-assisted conditions. Org. Lett. 2006, 8, 2707–2710.

    Article  Google Scholar 

  62. Wei, C. M.; Li, Z. G.; Li, C.-J. The first silver-catalyzed three-component coupling of aldehyde, alkyne, and amine. Org. Lett. 2003, 5, 4473–4475.

    Article  Google Scholar 

  63. Shi, L.; Tu, Y.-Q.; Wang, M.; Zhang, F.-M.; Fan, C.-A. Microwave-promoted three-component coupling of aldehyde, alkyne, and amine via C-H activation catalyzed by copper in water. Org. Lett. 2004, 6, 1001–1003.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21573286, 21173269, and 21572688), Ministry of Science and Technology of China (Nos. 2011BAK15B05 and 2015AA034603), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20130007110003), and Science Foundation of China University of Petroleum, Beijing (No. 2462015YQ0304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang.

Electronic supplementary material

12274_2016_1341_MOESM1_ESM.pdf

Microwave-assisted synthesis of ultrafine Au nanoparticles immobilized on MOF-199 in high loading as efficient catalysts for a three-component coupling reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Zhang, X., Dai, X. et al. Microwave-assisted synthesis of ultrafine Au nanoparticles immobilized on MOF-199 in high loading as efficient catalysts for a three-component coupling reaction. Nano Res. 10, 876–889 (2017). https://doi.org/10.1007/s12274-016-1341-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1341-1

Keywords

Navigation