Skip to main content
Log in

In situ probing of cell–cell communications with surface-enhanced Raman scattering (SERS) nanoprobes and microfluidic networks for screening of immunotherapeutic drugs

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Discovering novel drugs for cancer immunotherapy requires a robust in vitro drug screening platform that allows for straightforward probing of cell–cell communications. Here, we combined surface-enhanced Raman scattering (SERS) nanoprobes with microfluidic networks to monitor in situ the cancer–immune system intercellular communications. The microfluidic platform links up immune cells with cancer cells, where the cancer-cell secretions act as signaling mediators. First, gold@silver core–shell nanorods were employed to fabricate SERS immunoprobes for analysis of the signaling molecules. Multiple cancer secretions in a tumor microenvironment were quantitatively analyzed by a SERS-assisted three-dimensional (3D) barcode immunoassay with high sensitivity (1 ng/mL). Second, in an on-chip cell proliferation assay, multiple immunosuppressive proteins secreted by cancer cells were found to inhibit activation of immune cells, indicating that the platform simulates the physiological process of cancer–immune system communications. Furthermore, potential drug candidates were tested on this platform. A quantitative SERS immunoassay was performed to evaluate drug efficacy at regulating the secretion behavior of cancer cells and the activity of immune cells. This assay showed the suitability of this platform for in vitro drug screening. It is expected that the fully integrated and highly automated SERS-microfluidic platform will become a powerful analytical tool for probing intercellular communications and should accelerate the discovery and clinical validation of novel drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van der Burg, S. H.; Arens, R.; Ossendorp, F.; van Hall, T.; Melief, C. J. M. Vaccines for established cancer: Overcoming the challenges posed by immune evasion. Nat. Rev. Cancer 2016, 16, 219–233.

    Article  Google Scholar 

  2. Kassiotis, G.; Stoye, J. P. Immune responses to endogenous retroelements: Taking the bad with the good. Nat. Rev. Immunol. 2016, 16, 207–219.

    Article  Google Scholar 

  3. Obenauf, A. C.; Zou, Y. L.; Ji, A. L.; Vanharanta, S.; Shu, W. P.; Shi, H. B.; Kong, X. J.; Bosenberg, M. C.; Wiesner, T.; Rosen, N. et al. Therapy-induced tumour secretomes promote resistance and tumour progression. Nature 2015, 520, 368–372.

    Article  Google Scholar 

  4. Motz, G. T.; Coukos, G. The parallel lives of angiogenesis and immunosuppression: Cancer and other tales. Nat. Rev. Immunol. 2011, 11, 702–711.

    Article  Google Scholar 

  5. Vinay, D. S.; Ryan, E. P.; Pawelec, G.; Talib, W. H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W. K.; Whelan, R. L.; Kumara, H. et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin. Cancer Biol. 2015, 35, S185–S198.

    Article  Google Scholar 

  6. Kim, R.; Emi, M.; Tanabe, K.; Arihiro, K. Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res. 2006, 66, 5527–5536.

    Article  Google Scholar 

  7. Venuti, A.; Curzio, G.; Mariani, L.; Paolini, F. Immunotherapy of HPV-associated cancer: DNA/plant-derived vaccines and new orthotopic mouse models. Cancer Immunol. Immunother. 2015, 64, 1329–1338.

    Article  Google Scholar 

  8. Ostrand-Rosenberg, S. Animal models of tumor immunity, immunotherapy and cancer vaccines. Curr. Opin. Immunol. 2004, 16, 143–150.

    Article  Google Scholar 

  9. Imhof, M.; Karas, I.; Gomez, I.; Eger, A.; Imhof, M. Interaction of tumor cells with the immune system: Implications for dendritic cell therapy and cancer progression. Drug Discov. Today 2013, 18, 35–42.

    Article  Google Scholar 

  10. López-Muñoz, H.; Escobar-Sánchez, M. L.; López-Marure, R.; Lascurain-Ledesma, R.; Zenteno, E.; Hernández-Vazquez, J. M. V.; Weißs-Steider, B.; Sánchez-Sánchez, L. Cervical cancer cells induce apoptosis in TCD4+lymphocytes through the secretion of TGF-ß. Arch. Gynecol. Obstet. 2013, 287, 755–763.

    Article  Google Scholar 

  11. Joffroy, C. M.; Buck, M. B.; Stope, M. B.; Popp, S. L.; Pfizenmaier, K.; Knabbe, C. Antiestrogens induce transforming growth factor ß-mediated immunosuppression in breast cancer. Cancer Res. 2010, 70, 1314–1322.

    Article  Google Scholar 

  12. Díaz-Benítez, C. E.; Navarro-Fuentes, K. R.; Flores-Sosa, J. A.; Juárez-Díaz, J.; Uribe-Salas, F. J.; Román-Basaure, E.; González-Mena, L. E.; Alonso de Ruíz, P.; López-Estrada, G.; Lagunas-Martínez, A. et al. CD3? expreßsion and T cell proliferation are inhibited by TGF-ß1 and IL-10 in cervical cancer patients. J. Clin. Immunol. 2009, 29, 532–544.

    Article  Google Scholar 

  13. Garnett, M. J.; Edelman, E. J.; Heidorn, S. J.; Greenman, C. D.; Dastur, A.; Lau, K. W.; Greninger, P.; Thompson, I. R.; Luo, X.; Soares, J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012, 483, 570–575.

    Article  Google Scholar 

  14. Gao, H.; Korn, J. M.; Ferretti, S.; Monahan, J. E.; Wang, Y. Z.; Singh, M.; Zhang, C.; Schnell, C.; Yang, G. Z.; Zhang, Y. et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 2015, 21, 1318–1325.

    Article  Google Scholar 

  15. Neužil, P.; Giselbrecht, S.; Länge, K.; Huang, T. J.; Manz, A. Revisiting lab-on-a-chip technology for drug discovery. Nat. Rev. Drug Discov. 2012, 11, 620–632.

    Article  Google Scholar 

  16. Zheng, X. T.; Yu, L.; Li, P. W.; Dong, H.; Wang, Y. J.; Liu, Y.; Li, C. M. On-chip investigation of cell-drug interactions. Adv. Drug Deliv. Rev. 2013, 65, 1556–1574.

    Article  Google Scholar 

  17. Shao, Y.; Fu, J. P. Integrated micro/nanoengineered functional biomaterials for cell mechanics and mechanobiology: A materials perspective. Adv. Mater. 2014, 26, 1494–1533.

    Article  Google Scholar 

  18. Kim, D.; Wu, X. J.; Young, A. T.; Haynes, C. L. Microfluidics-based in vivo mimetic systems for the study of cellular biology. Acc. Chem. Res. 2014, 47, 1165–1173.

    Article  Google Scholar 

  19. Nahavandi, S.; Tang, S. Y.; Baratchi, S.; Soffe, R.; Nahavandi, S.; Kalantar-Zadeh, K.; Mitchell, A.; Khoshmanesh, K. Microfluidic platforms for the investigation of intercellular signalling mechanisms. Small 2014, 10, 4810–4826.

    Article  Google Scholar 

  20. Guo, F.; French, J. B.; Li, P.; Zhao, H.; Chan, C. Y.; Fick, J. R.; Benkovic, S. J.; Huang, T. J. Probing cell-cell communication with microfluidic devices. Lab Chip 2013, 13, 3152–3162.

    Article  Google Scholar 

  21. Unger, M. A.; Chou, H. P.; Thorsen, T.; Scherer, A.; Quake, S. R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 2000, 288, 113–116.

    Article  Google Scholar 

  22. Zeng, S. J.; Li, B. W.; Su, X. O.; Qin, J. H.; Lin, B. C. Microvalve-actuated precise control of individual droplets in microfluidic devices. Lab Chip 2009, 9, 1340–1343.

    Article  Google Scholar 

  23. Liu, J.; Hansen, C.; Quake, S. R. Solving the “world-to-chip” interface problem with a microfluidic matrix. Anal. Chem. 2003, 75, 4718–4723.

    Article  Google Scholar 

  24. Lane, L. A.; Qian, X. M.; Nie, S. M. SERS nanoparticles in medicine: From label-free detection to spectroscopic tagging. Chem. Rev. 2015, 115, 10489–10529.

    Google Scholar 

  25. Wang, Y. Q.; Yan, B.; Chen, L. X. SERS tags: Novel optical nanoprobes for bioanalysis. Chem. Rev. 2013, 113, 1391–1428.

    Article  Google Scholar 

  26. Wu, L.; Wang, Z. Y.; Fan, K. Q.; Zong, S. F.; Cui, Y. P. A SERS-assisted 3D barcode chip for high-throughput biosensing. Small 2015, 11, 2798–2806.

    Article  Google Scholar 

  27. Dogar, A. M.; Towbin, H.; Hall, J. Suppreßsion of latent transforming growth factor (TGF)-ß1 restores growth inhibitory TGF-ß signaling through microRNAs. J. Biol. Chem. 2011, 286, 16447–16458.

    Article  Google Scholar 

  28. Chou, S.-Y.; Hsu, C.-S.; Hsu, M.-Y.; Liang, S.-J.; Yeh, C.-L.; Yeh, S.-L. Effects of different arginine concentrations on angiogenic protein production induced by HeLa cells. Nutrition 2010, 26, 818–822.

    Article  Google Scholar 

  29. Vardhan, H.; Gupta, R.; Jha, R.; Bhengraj, A. R.; Mittal, A. Ferritin heavy chain-mediated iron homoeostasis regulates expression of IL-10 in Chlamydia trachomatis-infected HeLa cells. Cell Biol. Int. 2011, 35, 793–798.

    Article  Google Scholar 

  30. Cui, C.; Feng, H. L.; Shi, X. L.; Wang, Y. Z.; Feng, Z. Y.; Liu, J. L.; Han, Z. P.; Fu, J. Q.; Fu, Z. J.; Tong, H. Artesunate down-regulates immunosuppreßsion from colorectal cancer Colon26 and RKO cells in vitro by decreasing transforming growth factor ß1 and interleukin-10. Int. Immunopharmacol. 2015, 27, 110–121.

    Article  Google Scholar 

  31. Zuo, W.; Wang, Z. Z.; Xue, J. Artesunate induces apoptosis of bladder cancer cells by miR-16 regulation of COX-2 expression. Int. J. Mol. Sci. 2014, 15, 14298–14312.

    Article  Google Scholar 

  32. Michaelis, M.; Kleinschmidt, M. C.; Barth, S.; Rothweiler, F.; Geiler, J.; Breitling, R.; Mayer, B.; Deubzer, H.; Witte, O.; Kreuter, J. et al. Anti-cancer effects of artesunate in a panel of chemoresistant neuroblastoma cell lines. Biochem. Pharmacol. 2010, 79, 130–136.

    Article  Google Scholar 

  33. Youns, M.; Efferth, T.; Reichling, J.; Fellenberg, K.; Bauer, A.; Hoheisel, J. D. Gene expression profiling identifies novel key players involved in the cytotoxic effect of Artesunate on pancreatic cancer cells. Biochem. Pharmacol. 2009, 78, 273–283.

    Article  Google Scholar 

  34. Sideras, K.; Braat, H.; Kwekkeboom, J.; van Eijck, C. H.; Peppelenbosch, M. P.; Sleijfer, S.; Bruno, M. Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies. Cancer Treat. Rev. 2014, 40, 513–522.

    Article  Google Scholar 

  35. Leen, A. M.; Rooney, C. M.; Foster, A. E. Improving T cell therapy for cancer. Annu. Rev. Immunol. 2007, 25, 243–265.

    Article  Google Scholar 

  36. Zhang, H.; Song, Y.; Li, Z. Y.; Zhang, T.; Zeng, L.; Li, W. L.; Bian, Y. Y. Evaluation of ligustrazine on the prevention of experimentally induced abdominal adhesions in rats. Int. J. Surg. 2015, 21, 115–121.

    Article  Google Scholar 

  37. Wu, L.; Wang, Z. Y.; Zong, S. F.; Huang, Z.; Zhang, P. Y.; Cui, Y. P. A SERS-based immunoassay with highly increased sensitivity using gold/silver core-shell nanorods. Biosens. Bioelectron. 2012, 38, 94–99.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science of China (No. 61535003, 61177033 and 61275182), the Excellent Youth Foundation of Jiangsu Province (No. BK20140023), the National Basic Research Program of China (No. 2015CB352002), the Scientific Research Foundation of Graduate School of Southeast University (No. YBPY1507), the Science Foundation for the Excellent Youth Scholars of Southeast University and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuyuan Wang or Yiping Cui.

Electronic supplementary material

12274_2016_1316_MOESM1_ESM.pdf

In situ probing of cell–cell communications with surfaceenhanced Raman scattering (SERS) nanoprobes and microfluidic networks for screening of immunotherapeutic drugs

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Wang, Z., Zhang, Y. et al. In situ probing of cell–cell communications with surface-enhanced Raman scattering (SERS) nanoprobes and microfluidic networks for screening of immunotherapeutic drugs. Nano Res. 10, 584–594 (2017). https://doi.org/10.1007/s12274-016-1316-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1316-2

Keywords

Navigation