Skip to main content
Log in

Epitaxial growth and thermal-conductivity limit of single-crystalline Bi2Se3/In2Se3 superlattices on mica

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Thermal transport in superlattices is governed by various phonon-scattering processes. For extracting the phonon-scattering contribution of hetero-interfaces in chalcogenide superlattices, single-crystalline Bi2Se3/In2Se3 (BS/IS) superlattices with minimized defects are prepared on fluorophlogopite mica by molecular beam epitaxy. The cross-plane heat-conducting properties of the BS/IS superlattices are demonstrated to depend precisely on the period thicknesses and constituents of the superlattices, where a minimum in the thermal conductivity indicates a crossover from particle-like to wave-like phonon transport in the superlattices. The thermal-conductivity minimum of the BS/IS superlattices is nearly one order of magnitude lower than that of intrinsic BS film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hicks, L. D.; Dresselhaus, M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1993, 47, 12727–12731.

    Article  Google Scholar 

  2. Hicks, L. D.; Harman, T. C.; Sun, X.; Dresselhaus, M. S. Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1996, 53, R10493–R10496.

    Article  Google Scholar 

  3. Vashaee, D.; Shakouri, A. Improved thermoelectric power factor in metal-based superlattices. Phys. Rev. Lett. 2004, 92, 106103.

    Article  Google Scholar 

  4. Ravichandran, J.; Yadav, A. K.; Cheaito, R.; Rossen, P. B.; Soukiassian, A.; Suresha, S. J.; Duda, J. C.; Foley, B. M.; Lee, C. H.; Zhu, Y. et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat. Mater. 2014, 13, 168–172.

    Article  Google Scholar 

  5. Simkin, M. V.; Mahan, G. D. Minimum thermal conductivity of superlattices. Phys. Rev. Lett. 2000, 84, 927–930.

    Article  Google Scholar 

  6. Koh, Y. K.; Cao, Y.; Cahill, D. G.; Jena, D. Heat-transport mechanisms in superlattices. Adv. Funct. Mater. 2009, 19, 610–615.

    Article  Google Scholar 

  7. Ferrando-Villalba, P.; Lopeandí a, A. F.; Alvarez, F. X.; Paul, B.; de Tomá s, C.; Alonso, M. I.; Garriga, M.; Goñ i, A. R.; Santiso, J.; Garcia, G. et al. Tailoring thermal conductivity by engineering compositional gradients in Si1-xGex superlattices. Nano Res. 2015, 8, 2833–2841.

    Article  Google Scholar 

  8. Saha, B.; Koh, Y. R.; Comparan, J.; Sadasivam, S.; Schroeder, J. L.; Garbrecht, M.; Mohammed, A.; Birch, J.; Fisher, T.; Shakouri, A. et al. Cross-plane thermal conductivity of (Ti, W)N/(Al, Sc)N metal/semiconductor superlattices. Phys. Rev. B 2016, 93, 045311.

    Article  Google Scholar 

  9. Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O’Quinn, B. Thin-film thermoelectric devices with high roomtemperature figures of merit. Nature 2001, 413, 597–602.

    Article  Google Scholar 

  10. Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y. C.; Minnich, A.; Yu, B.; Yan, X.; Wang, D. Z.; Muto, A.; Vashaee, D. et al. Highthermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008, 320, 634–638.

    Article  Google Scholar 

  11. Snyder, G. J.; Lim, J. R.; Huang, C. K.; Fleurial, J. P. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nat. Mater. 2003, 2, 528–531.

    Article  Google Scholar 

  12. Chowdhury, I.; Prasher, R.; Lofgreen, K.; Chrysler, G.; Narasimhan, S.; Mahajan, R.; Koester, D.; Alley, R.; Venkatasubramanian, R. On-chip cooling by superlatticebased thin-film thermoelectrics. Nat. Nanotechnol. 2009, 4, 235–238.

    Article  Google Scholar 

  13. Zhang, H. J.; Liu, C.-X.; Qi, X.-L.; Dai, X.; Fang, Z.; Zhang, S.-C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.

    Article  Google Scholar 

  14. Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 398–402.

    Article  Google Scholar 

  15. Wang, J.; Li, H. D.; Chang, C. Z.; He, K.; Lee, J. S.; Lu, H. Z.; Sun, Y.; Ma, X. C.; Samarth, N.; Shen, S. Q. et al. Anomalous anisotropic magnetoresistance in topological insulator films. Nano Res. 2012, 5, 739–746.

    Article  Google Scholar 

  16. Ghaemi, P.; Mong, R. S. K.; Moore, J. E. In-plane transport and enhanced thermoelectric performance in thin films of the topological insulators Bi2Te3 and Bi2Se3. Phys. Rev. Lett. 2010, 105, 166603.

    Article  Google Scholar 

  17. Kim, D.; Syers, P.; Butch, N. P.; Paglione, J.; Fuhrer, M. S. Ambipolar surface state thermoelectric power of topological insulator Bi2Se3. Nano Lett. 2014, 14, 1701–1706.

    Article  Google Scholar 

  18. Osterhage, H.; Gooth, J.; Hamdou, B.; Gwozdz, P.; Zierold, R.; Nielsch, K. Thermoelectric properties of topological insulator Bi2Te3, Sb2Te3, and Bi2Se3 thin film quantum wells. Appl. Phys. Lett. 2014, 105, 123117.

    Article  Google Scholar 

  19. Venkatasubramanian, R. Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures. Phys. Rev. B 2000, 61, 3091–3097.

    Article  Google Scholar 

  20. Maldovan, M. Phonon wave interference and thermal bandgap materials. Nat. Mater. 2015, 14, 667–674.

    Article  Google Scholar 

  21. Touzelbaev, M. N.; Zhou, P.; Venkatasubramanian, R.; Goodson, K. E. Thermal characterization of Bi2Te3/Sb2Te3 superlattices. J. Appl. Phys. 2001, 90, 763–767.

    Article  Google Scholar 

  22. Li, H. D.; Wang, Z. Y.; Kan, X.; Guo, X.; He, H. T.; Wang, Z.; Wang, J. N.; Wong, T. L.; Wang, N.; Xie, M. H. The van der Waals epitaxy of Bi2Se3 on the vicinal Si(111) surface: An approach for preparing high-quality thin films of a topological insulator. New J. Phys. 2010, 12, 103038.

    Article  Google Scholar 

  23. Rathi, S. J.; Smith, D. J.; Drucker, J. Optimization of In2Se3/Si(111) heteroepitaxy to enable Bi2Se3/In2Se3 bilayer growth. Cryst. Growth Des. 2014, 14, 4617–4623.

    Article  Google Scholar 

  24. Guo, Y. F.; Aisijiang, M.; Zhang, K.; Jiang, W.; Chen, Y. L.; Zheng, W. S.; Song, Z. H.; Cao, J.; Liu, Z. F.; Peng, H. L. Selective-area van der Waals epitaxy of topological insulator grid nanostructures for broadband transparent flexible electrodes. Adv. Mater. 2013, 25, 5959–5964.

    Article  Google Scholar 

  25. Lin, Z. Y.; Chen, Y.; Yin, A. X.; He, Q. Y.; Huang, X. Q.; Xu, Y. X.; Liu, Y.; Zhong, X.; Huang, Y.; Duan, X. F. Solution processable colloidal nanoplates as building blocks for high-performance electronic thin films on flexible substrates. Nano Lett. 2014, 14, 6547–6553.

    Article  Google Scholar 

  26. Liu, X. L.; Fang, Z. C.; Zhang, Q.; Huang, R. J.; Lin, L.; Ye, C. M.; Ma, C.; Zeng, J. Ethylenediaminetetraacetic acid-assisted synthesis of Bi2Se3 nanostructures with unique edge sites. Nano Res. 2016, 9, 2707–2714.

    Article  Google Scholar 

  27. Wang, Z. Y.; Guo, X.; Li, H. D.; Wong, T. L.; Wang, N.; Xie, M. H. Superlattices of Bi2Se3/In2Se3: Growth characteristics and structural properties. Appl. Phys. Lett. 2011, 99, 023112.

    Article  Google Scholar 

  28. Zhao, Y. F.; Liu, H. W.; Guo, X.; Jiang, Y.; Sun, Y.; Wang, H. C.; Wang, Y.; Li, H. D.; Xie, M. H.; Xie, X. C. et al. Crossover from 3D to 2D quantum transport in Bi2Se3/ In2Se3 superlattices. Nano Lett. 2014, 14, 5244–5249.

    Article  Google Scholar 

  29. George, S. D.; Augustine, S.; Mathai, E.; Radhakrishnan, P.; Nampoori, V. P. N.; Vallabhan, C. P. G. Effect of Te doping on thermal diffusivity of Bi2Se3 crystals: A study using open cell photoacoustic technique. Phys. Stat. Sol. A 2003, 196, 384–389.

    Article  Google Scholar 

  30. Yao, T. Thermal properties of AlAs/GaAs superlattices. Appl. Phys. Lett. 1987, 51, 1798–1800.

    Article  Google Scholar 

  31. Li, H. D.; Ren, W. Y.; Wang, G. Y.; Gao, L.; Peng, R. M.; Li, H.; Zhang, P. Y.; Shafa, M.; Tong, X.; Luo, S. Y. et al. Monolithic integration of metastable a-In2Se3 thin film on H-passivated Si(111) for photovoltaic applications. J. Phys. D: Appl. Phys. 2016, 49, 145108.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 11104010, 61474014, and 51272038), Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (No. 20120910), and the National Basic Research Program of China (No. 2013CB933301).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Handong Li or Zhiming Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, W., Li, H., Gao, L. et al. Epitaxial growth and thermal-conductivity limit of single-crystalline Bi2Se3/In2Se3 superlattices on mica. Nano Res. 10, 247–254 (2017). https://doi.org/10.1007/s12274-016-1282-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1282-8

Keywords

Navigation