Skip to main content
Log in

Characterization of tin(II) sulfide defects/vacancies and correlation with their photocurrent

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The presence of defects/vacancies in nanomaterials influences the electronic structure of materials, and thus, it is necessary to study the correlation between the optoelectronic properties of a nanomaterial and its defects/vacancies. Herein, we report a facile solvothermal route to synthesize three-dimensional (3D) SnS nanostructures formed by {131} faceted nanosheet assembly. The 3D SnS nanostructures were calcined at temperatures of 350, 400, and 450 °C and used as counter electrodes, before their photocurrent properties were investigated. First principle computation revealed the photocurrent properties depend on the defect/vacancy concentration within the samples. It is very interesting that characterization with positron annihilation spectrometry confirmed that the density of defects/vacancies increased with the calcination temperature, and a maximum photocurrent was realized after treatment at 400 °C. Further, the defect/vacancy density decreased when the calcination temperature reached 450 °C as the higher calcination temperature enlarged the mesopores and densified the pore walls, which led to a lower photocurrent value at 450 °C than at 400 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lahiri, J.; Lin, Y.; Bozkurt, P.; Oleynik, I. I.; Batzill, M. An extended defect in graphene as a metallic wire. Nat. Nanotechnol. 2010, 5, 326–329.

    Article  Google Scholar 

  2. Yi, J. B.; Lim, C. C.; Xing, G. Z.; Fan, H. M.; Van, L. H.; Huang, S. L.; Yang, K. S.; Huang, X. L.; Qin, X. B.; Wang, B. Y. et al. Ferromagnetism in dilute magnetic semiconductors through defect engineering: Li-doped ZnO. Phys. Rev. Lett. 2010, 104, 137201.

    Article  Google Scholar 

  3. Meng, W. W.; Saparov, B.; Hong, F.; Wang, J. B.; Mitzi, D. B.; Yan, Y. F. Alloying and defect control within chalcogenide perovskites for optimized photovoltaic application. Chem. Mater. 2016, 28, 821–829.

    Article  Google Scholar 

  4. Sturza, M.; Allred, J. M.; Malliakas, C. D.; Bugaris, D. E.; Han, F.; Chung, D. Y.; Kanatzidis, M. G. Tuning the magnetic properties of new layered iron chalcogenides (BaF)2Fe2–x Q3 (Q = S, Se) by changing the defect concentration on the iron sublattice. Chem. Mater. 2015, 27, 3280–3290.

    Article  Google Scholar 

  5. Jia, W.; Wu, Y. E.; Chen, Y. F.; He, D. S.; Li, J. P.; Wang, Y.; Wang, Z.; Zhu, W.; Chen, C.; Peng, Q. et al. Interfaceinduced formation of onion-like alloy nanocrystals by defects engineering. Nano Res. 2016, 9, 584–592.

    Article  Google Scholar 

  6. Wang, H.; Zhang, J. J.; Hang, X. D.; Zhang, X. D.; Xie, J. F.; Pan, B. C.; Xie, Y. Half-metallicity in single-layered manganese dioxide nanosheets by defect engineering. Angew. Chem., Int. Ed. 2015, 54, 1195–1199.

    Article  Google Scholar 

  7. Zheng, H. L.; Yang, B. S.; Wang, D. D.; Han, R. L.; Du, X. B.; Yan, Y. Tuning magnetism of monolayer MoS2 by doping vacancy and applying strain. Appl. Phys. Lett. 2014, 104, 132403.

    Article  Google Scholar 

  8. Cai, L.; He, J. F.; Liu, Q. H.; Yao, T.; Chen, L; Yan, W. S.; Hu, F. C.; Jiang, Y.; Zhao, Y. D.; Hu, T. D. et al. Vacancyinduced ferromagnetism of MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 2622–2627.

    Article  Google Scholar 

  9. Sevik, C.; Sevinçli, H.; Cuniberti, G.; Çağın, T. Phonon engineering in carbon nanotubes by controlling defect concentration. Nano Lett. 2011, 11, 4971–4977.

    Article  Google Scholar 

  10. Liang, W. J.; Rabin, O.; Hochbaum, A. I.; Fardy, M.; Zhang, M. J.; Yang, P. D. Thermoelectric properties of p-type PbSe nanowires. Nano Res. 2009, 2, 394–399.

    Article  Google Scholar 

  11. Chen, Z. X.; Huang, L.; Xi, Y. J.; Li, R.; Li, W. C.; Xu, G. Q.; Cheng, H. S. Geometrical structures, and electronic and transport properties of a novel two-dimensional β-GaS transparent conductor. Nano Res. 2015, 8, 3177–3185.

    Article  Google Scholar 

  12. Rauch, T.; Böberl, M.; Tedde, S. F.; Fürst, J.; Kovalenko, M. V.; Hesser, G.; Lemmer, U.; Heiss, W.; Hayden, O. Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nat. Photonics 2009, 3, 332–336.

    Article  Google Scholar 

  13. Zhao, S. L.; Wang, H.; Zhou, Y.; Liao, L.; Jiang, Y.; Yang, X.; Chen, G. C.; Lin, M.; Wang, Y.; Peng, H. L. et al. Controlled synthesis of single-crystal SnSe nanoplates. Nano Res. 2015, 8, 288–295.

    Article  Google Scholar 

  14. Franzman, M. A.; Schlenker, C. W.; Thompson, M. E.; Brutchey, R. L. Solution-phase synthesis of SnSe nanocrystals for use in solar cells. J. Am. Chem. Soc. 2010, 132, 4060–4061.

    Article  Google Scholar 

  15. Liu, S.; Guo, X. Y.; Li, M. R.; Zhang, W. H.; Liu, X. Y.; Li, C. Solution-phase synthesis and characterization of singlecrystalline SnSe nanowires. Angew. Chem., Int. Ed. 2011, 50, 12050–12053.

    Article  Google Scholar 

  16. Zhang, J. B.; Gao, J. B.; Church, C. P.; Miller, E. M.; Luther, J. M.; Klimov, V. I.; Beard, M. C. PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere. Nano Lett. 2014, 14, 6010–6015.

    Article  Google Scholar 

  17. Davis, N. J. L. K.; Böhm, M. L.; Tabachnyk, M.; Wisnivesky-Rocca-Rivarola, F.; Jellicoe, T. C.; Ducati, C.; Ehrler, B.; Greenham, N. C. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%. Nat. Commun. 2015, 6, 8259.

    Article  Google Scholar 

  18. Zhou, Y. B.; Nie, Y. F.; Liu, Y. J.; Yan, K.; Hong, J. H.; Jin, C. H.; Zhou, Y.; Yin, J. B.; Liu, Z. F.; Peng, H. L. Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets. ACS Nano 2014, 8, 1485–1490.

    Article  Google Scholar 

  19. Mahjouri-Samani, M.; Gresback, R.; Tian, M. K.; Wang, K.; Puretzky, A. A.; Rouleau, C. M.; Eres, G.; Ivanov, I. N.; Xiao, K.; McGuire, M. A. et al. Pulsed laser deposition of photoresponsive two-dimensional GaSe nanosheet networks. Adv. Funct. Mater. 2014, 24, 6365–6371.

    Article  Google Scholar 

  20. Hu, P. A.; Wen, Z. Z.; Wang, L. F.; Tan, P. H.; Xiao, K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 2012, 6, 5988–5994.

    Article  Google Scholar 

  21. Lei, S. D.; Ge, L. H.; Liu, Z.; Najmaei, S.; Shi, G.; You, G.; Lou, J.; Vajtai, R.; Ajayan, P. M. Synthesis and photoresponse of large GaSe atomic layers. Nano Lett. 2013, 13, 2777–2781.

    Article  Google Scholar 

  22. Hickey, S. G.; Waurisch, C.; Rellinghaus, B.; Eychmüller, A. Size and shape control of colloidally synthesized IV-VI nanoparticulate tin(II) sulfide. J. Am. Chem. Soc. 2008, 130, 14978–14979.

    Article  Google Scholar 

  23. Deng, Z. T.; Cao, D.; He, J.; Lin, S.; Lindsay, S. M.; Liu, Y. Solution synthesis of ultrathin single-crystalline SnS nanoribbons for photodetectors via phase transition and surface processing. ACS Nano 2012, 6, 6197–6207.

    Article  Google Scholar 

  24. Yue, G. H.; Wang, L. S.; Wang, X.; Chen, Y. Z.; Peng, D. L. Characterization and optical properties of the single crystalline SnS nanowire arrays. Nanoscale Res. Lett. 2009, 4, 359–363.

    Article  Google Scholar 

  25. Walsh, A.; Watson, G. W. Influence of the anion on lone pair formation in Sn(II) monochalcogenides: A DFT study. J. Phys. Chem. B 2005, 109, 18868–18875.

    Article  Google Scholar 

  26. Biacchi, A. J.; Vaughn, D. D., II; Schaak, R. E. Synthesis and crystallographic analysis of shape-controlled SnS nanocrystal photocatalysts: Evidence for a pseudotetragonal structural modification. J. Am. Chem. Soc. 2013, 135, 11634–11644.

    Article  Google Scholar 

  27. Reddy, N. K.; Devika, M.; Ahsanulhaq, Q.; Gunasekhar, K. R. Growth of orthorhombic SnS nanobox structures on seeded substrates. Cryst. Growth Des. 2010, 10, 4769–4772.

    Article  Google Scholar 

  28. Tripathi, A. M.; Mitra, S. Tin sulfide (SnS) nanorods: Structural, optical and lithium storage property study. RSC Adv. 2014, 4, 10358–10366.

    Article  Google Scholar 

  29. Panda, S. K.; Datta, A.; Dev, A.; Gorai, S.; Chaudhuri, S. Surfactant-assisted synthesis of SnS nanowires grown on tin foils. Cryst. Growth Des. 2006, 6, 2177–2181.

    Article  Google Scholar 

  30. Suryawanshi, S. R.; Warule, S. S.; Patil, S. S.; Patil, K. R.; More, M. A. Vapor-liquid-solid growth of one-dimensional tin sulfide (SnS) nanostructures with promising field emission behavior. ACS Appl. Mater. Interfaces 2014, 6, 2018–2025.

    Article  Google Scholar 

  31. Yue, G. H.; Lin, Y. D.; Wen, X.; Wang, L. S.; Peng, D. L. SnS homojunction nanowire-based solar cells. J. Mater. Chem. 2012, 22, 16437–16441.

    Article  Google Scholar 

  32. Xu, Y.; Al-Salim, N.; Bumby, C. W.; Tilley, R. D. Synthesis of SnS quantum dots. J. Am. Chem. Soc. 2009, 131, 15990–15991.

    Article  Google Scholar 

  33. Guo, X.; Xie, H. J.; Zheng, J. W.; Xu, H.; Wang, Q. K.; Li, Y. Q.; Lee, S. T.; Tang, J. X. The synthesis of multistructured SnS nanocrystals toward enhanced performance for photovoltaic devices. Nanoscale 2015, 7, 867–871.

    Article  Google Scholar 

  34. Chen, X.; Hou, Y.; Zhang, B.; Yang, X. H.; Yang, H. G. Low-cost SnSx counter electrodes for dye-sensitized solar cells. Chem. Commun. 2013, 49, 5793–5795.

    Article  Google Scholar 

  35. Sinsermsuksakul, P.; Sun, L. Z.; Lee, S. W.; Park, H. H.; Kim, S. B.; Yang, C. X.; Gordon, R. G. Overcoming efficiency limitations of SnS-based solar cells. Adv. Energy Mater. 2014, 4, 1400496.

    Article  Google Scholar 

  36. Zhang, Y. J.; Lu, J.; Shen, S. L.; Xu, H. R.; Wang, Q. B. Ultralarge single crystal SnS rectangular nanosheets. Chem. Commun. 2011, 47, 5226–5228.

    Article  Google Scholar 

  37. Lu, J.; Nan, C. Y.; Li, L. H.; Peng, Q.; Li, Y. D. Flexible SnS nanobelts: Facile synthesis, formation mechanism and application in Li-ion batteries. Nano Res. 2013, 6, 55–64.

    Article  Google Scholar 

  38. Li, G.; Liu, H. J. Improved electrode performance of mesoporous β-In2S3 microspheres for lithium ion batteries using carbon coated microspheres. J. Mater. Chem. 2011, 21, 18398–18402.

    Article  Google Scholar 

  39. Kim, W. T.; Kim, C. D. Optical energy gaps of β-In2S3 thin films grown by spray pyrolysis. J. Appl. Phys. 1986, 60, 2631–2633.

    Article  Google Scholar 

  40. Liu, L.; Liu, H. J.; Kou, H. Z.; Wang, Y. Q.; Zhou, Z.; Ren, M. M.; Ge, M.; He, X. W. Morphology control of β-In2S3 from chrysanthemum-like microspheres to hollow microspheres: Synthesis and electrochemical properties. Cryst. Growth Des. 2009, 9, 113–117.

    Article  Google Scholar 

  41. Sun, Y. G.; Gates, B.; Mayers, B.; Xia, Y. N. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002, 2, 165–168.

    Article  Google Scholar 

  42. Xu, W.; Wang, Y.; Bai, X.; Dong, B.; Liu, Q.; Chen, J. S.; Song, H. W. Controllable synthesis and size-dependent luminescent properties of YVO4:Eu3+ nanospheres and microspheres. J. Phys. Chem. C 2010, 114, 14018–14024.

    Article  Google Scholar 

  43. Hasobe, T.; Fukuzumi, S.; Kamat, P. V. Stacked-cup carbon nanotubes for photoelectrochemical solar cells. Angew. Chem., Int. Ed. 2006, 45, 755–759.

    Article  Google Scholar 

  44. Hou, Y.; Wang, D.; Yang, X. H.; Fang, W. Q.; Zhang, B.; Wang, H. F.; Lu, G. Z.; Hu, P.; Zhao, H. J.; Yang, H. G. Rational screening low-cost counter electrodes for dyesensitized solar cells. Nat. Commun. 2013, 4, 1583.

    Article  Google Scholar 

  45. Ataee-Esfahani, H.; Imura, M.; Yamauchi, Y. All-metal mesoporous nanocolloids: Solution-phase synthesis of core–shell Pd@Pt nanoparticles with a designed concave surface. Angew. Chem., Int. Ed. 2013, 52, 13611–13615.

    Article  Google Scholar 

  46. Hou, Y.; Chen, Z. P.; Wang, D.; Zhang, B.; Yang, S.; Wang, H. F.; Hu, P.; Zhao, H. J.; Yang, H. G. Highly electrocatalytic activity of RuO2 nanocrystals for triiodide reduction in dye-sensitized solar cells. Small 2014, 10, 484–492.

    Article  Google Scholar 

  47. Hauch, A.; Georg, A. Diffusion in the electrolyte and chargetransfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim. Acta 2001, 46, 3457–3466.

    Article  Google Scholar 

  48. Calogero, G.; Calandra, P.; Irrera, A.; Sinopoli, A.; Citro, I.; Di Marco, G. A new type of transparent and low cost counterelectrode based on platinum nanoparticles for dye-sensitized solar cells. Energy Environ. Sci. 2011, 4, 1838–1844.

    Article  Google Scholar 

  49. Liu, X. W.; Zhou, K. B.; Wang, L.; Wang, B. Y.; Li, Y. D. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 2009, 131, 3140–3141.

    Article  Google Scholar 

  50. Xiao, C.; Qin, X. M.; Zhang, J.; An, R.; Xu, J.; Li, K.; Cao, B. X.; Yang, J. L.; Ye, B. J.; Xie, Y. High thermoelectric and reversible p-n-p conduction type switching integrated in dimetal chalcogenide. J. Am. Chem. Soc. 2012, 134, 18460–18466.

    Article  Google Scholar 

  51. Wang, Z. X.; Xu, K.; Li, Y. C.; Zhan, X. Y.; Safdar, M.; Wang, Q. S.; Wang, F. M.; He, J. Role of Ga vacancy on a multilayer GaTe phototransistor. ACS Nano 2014, 8, 4859–4865.

    Article  Google Scholar 

  52. Li, G.; Liu, M. Y.; Kou, H. Z. Mesoporous α-Fe2O3 nanospheres: Structural evolution and investigation of magnetic properties. Chem.—Eur. J. 2011, 17, 4323–4329.

    Article  Google Scholar 

Download references

Acknowledgments

The theoretical-computational analysis of this work was supported by the U.S. Army Research Office MURI grant W911NF-11-1-0362.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert Vajtai or Boris I. Yakobson.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Wang, L., Zhou, L. et al. Characterization of tin(II) sulfide defects/vacancies and correlation with their photocurrent. Nano Res. 10, 218–228 (2017). https://doi.org/10.1007/s12274-016-1279-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1279-3

Keywords

Navigation