Skip to main content
Log in

Unexpected catalytic activity of rhodium nanodendrites with nanosheet subunits for methanol electrooxidation in an alkaline medium

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanocrystals of Rh, an important member of the noble metal catalyst family, have wide applications in heterogeneous catalytic reactions. Controlling the morphology of these noble metal nanocrystals has become an effective strategy for improving their catalytic activity and durability. In this work, well-defined Rh nanodendrites with very thin triangular branches as subunits are synthesized using a facile diethylene glycol reduction method, assisted by polyethyleneimine as a complex-forming agent and surfactant. For the first time, the methanol oxidation reaction (MOR) on Rh nanocrystals with a well-defined morphology is investigated using various electrochemical techniques in an alkaline medium. Unexpectedly, the as-prepared Rh nanodendrites, with ultrathin nanosheet subunits, exhibit superior electrocatalytic activity and durability during the MOR in an alkaline medium, indicating that Rh nanocrystals with specific morphology may be highly promising alternatives to Pt electrocatalysts in the MOR in an alkaline medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bianchini, C.; Shen, P. K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 2009, 109, 4183–4206.

    Article  Google Scholar 

  2. Antolini, E.; Gonzalez, E. R. Alkaline direct alcohol fuel cells. J. Power Sources 2010, 195, 3431–3450.

    Article  Google Scholar 

  3. Lu, Y. Z.; Jiang, Y. Y.; Gao, X. H.; Wang, X. D.; Chen, W. Strongly coupled Pd nanotetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and stability as oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2014, 136, 11687–11697.

    Article  Google Scholar 

  4. Shen, M. X.; Zheng, L.-R.; He, W. H.; Ruan, C. P.; Jiang, C. H.; Ai, K. L.; Lu, L. H. High-performance oxygen reduction electrocatalysts derived from uniform cobalt–adenine assemblies. Nano Energy 2015, 17, 120–130.

    Article  Google Scholar 

  5. Huang, W. J.; Wang, H. T.; Zhou, J. G.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F. P.; Zeng, M. et al. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat. Commun. 2015, 6, 10035.

    Article  Google Scholar 

  6. Koenigsmann, C.; Wong, S. S. Tailoring chemical composition to achieve enhanced methanol oxidation reaction and methanol-tolerant oxygen reduction reaction performance in palladium-based nanowire systems. ACS Catal. 2013, 3, 2031–2040.

    Article  Google Scholar 

  7. Kannan, P.; Maiyalagan, T.; Opallo, M. One-pot synthesis of chain-like palladium nanocubes and their enhanced electrocatalytic activity for fuel-cell applications. Nano Energy 2013, 2, 677–687.

    Article  Google Scholar 

  8. Wang, N.; Xu, Y.; Han, Y.; Gao, C. Z.; Cao, X. Mesoporous Pd@M (M = Pt, Au) microrods as excellent electrocatalysts for methanol oxidation. Nano Energy 2015, 17, 111–119.

    Article  Google Scholar 

  9. Zhao, M.; Abe, K.; Yamaura, S.-I.; Yamamoto, Y.; Asao, N. Fabrication of Pd–Ni–P metallic glass nanoparticles and their application as highly durable catalysts in methanol electro-oxidation. Chem. Mater. 2014, 26, 1056–1061.

    Article  Google Scholar 

  10. Xu, L.; Luo, Z. M.; Fan, Z. X.; Yu, S. J.; Chen, J. Z.; Liao, Y. S.; Xue, C. Controllable galvanic synthesis of triangular Ag–Pd alloy nanoframes for efficient electrocatalytic methanol oxidation. Chem.—Eur. J. 2015, 21, 8691–8695.

    Article  Google Scholar 

  11. Shen, S. Y.; Zhao, T. S. One-step polyol synthesis of Rhon- Pd bimetallic nanodendrites and their electrocatalytic properties for ethanol oxidation in alkaline media. J. Mater. Chem. A 2013, 1, 906–912.

    Article  Google Scholar 

  12. Suo, Y.; Hsing, I.-M. Highly active rhodium/carbon nanocatalysts for ethanol oxidation in alkaline medium. J. Power Sources 2011, 196, 7945–7950.

    Article  Google Scholar 

  13. Zhang, F. F.; Zhou, D. B.; Zhang, Z. J.; Zhou, M. D.; Wang, Q. Preparation of Rh/C and its high electro-catalytic activity for ethanol oxidation in alkaline media. RSC Adv. 2015, 5, 91829–91835.

    Article  Google Scholar 

  14. Yuan, Q.; Zhou, Z. Y.; Zhuang, J.; Wang, X. Tunable aqueous phase synthesis and shape-dependent electrochemical properties of rhodium nanostructures. Inorg. Chem. 2010, 49, 5515–5521.

    Article  Google Scholar 

  15. Sathe, B. R. Methanol electro-oxidation on nanostructured rhodium network. Energy Environ. Focus 2015, 4, 196–200.

    Article  Google Scholar 

  16. Wu, Z. X.; Chen, W. L.; Liu, H. Y.; Zhai, P.; Xiao, C. X.; Su, D. S.; Liu, H. C.; Ma, D. Reconstruction of rh nanoparticles in methanol oxidation reaction. Catal. Sci. Technol. 2015, 5, 4116–4122.

    Article  Google Scholar 

  17. Ye, E. Y.; Regulacio, M. D.; Zhang, S.-Y.; Loh, X. J.; Han, M.-Y. Anisotropically branched metal nanostructures. Chem. Soc. Rev. 2015, 44, 6001–6017.

    Article  Google Scholar 

  18. Xie, S. F.; Liu, X. Y.; Xia, Y. N. Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties. Nano Res. 2015, 8, 82–96.

    Article  Google Scholar 

  19. Porter, N. S.; Wu, H.; Quan, Z. W.; Fang, J. Y. Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals. Acc. Chem. Res. 2013, 46, 1867–1877.

    Article  Google Scholar 

  20. Chen, A. C.; Ostrom, C. Palladium-based nanomaterials: Synthesis and electrochemical applications. Chem. Rev. 2015, 115, 11999–12044.

    Article  Google Scholar 

  21. Zhang, L. L.; Wei, M.; Wang, S. Q.; Li, Z.; Ding, L.-X.; Wang, H. H. Highly stable PtP alloy nanotube arrays as a catalyst for the oxygen reduction reaction in acidic medium. Chem. Sci. 2015, 6, 3211–3216.

    Article  Google Scholar 

  22. Xu, H.; Ding, L.-X.; Feng, J.-X.; Li, G.-R. Pt/Ni(OH)2-NiOOH/Pd multi-walled hollow nanorod arrays as superior electrocatalysts for formic acid electrooxidation. Chem. Sci. 2015, 6, 6991–6998.

    Article  Google Scholar 

  23. Long, R.; Zhou, S.; Wiley, B. J.; Xiong, Y. J. Oxidative etching for controlled synthesis of metal nanocrystals: Atomic addition and subtraction. Chem. Soc. Rev. 2014, 43, 6288–6310.

    Article  Google Scholar 

  24. Wang, A.-L.; Liang, C.-L.; Lu, X.-F.; Tong, Y.-X.; Li, G.-R. Pt-MoO3-RGO ternary hybrid hollow nanorod arrays as high-performance catalysts for methanol electrooxidation. J. Mater. Chem. A 2016, 4, 1923–1930.

    Article  Google Scholar 

  25. Ding, L.-X.; Wang, A.-L.; Li, G.-R.; Liu, Z.-Q.; Zhao, W.-X.; Su, C.-Y.; Tong, Y.-X. Porous Pt-Ni-P composite nanotube arrays: Highly electroactive and durable catalysts for methanol electrooxidation. J. Am. Chem. Soc. 2012, 134, 5730–5733.

    Article  Google Scholar 

  26. Ma, L.; Wang, C. M.; Xia, B. Y.; Mao, K. K.; He, J. W.; Wu, X. J.; Xiong, Y. J.; Lou, X. W. Platinum multicubes prepared by Ni2+-mediated shape evolution exhibit high electrocatalytic activity for oxygen reduction. Angew. Chem., Int. Ed. 2015, 54, 5666–5671.

    Article  Google Scholar 

  27. Cheong, W.-C.; Liu, C. H.; Jiang, M. L.; Duan, H. H.; Wang, D. S.; Chen, C.; Li, Y. D. Free-standing palladiumnickel alloy wavy nanosheets. Nano Res. 2016, 9, 2244–2250.

    Article  Google Scholar 

  28. Liu, D.; Xie, M. L.; Wang, C. M.; Liao, L. W.; Qiu, L.; Ma, J.; Huang, H.; Long, R.; Jiang, J.; Xiong, Y. J. Pd-Ag alloy hollow nanostructures with interatomic charge polarization for enhanced electrocatalytic formic acid oxidation. Nano Res. 2016, 9, 1590–1599.

    Article  Google Scholar 

  29. Zhu, C. Z.; Du, D.; Eychmüller, A.; Lin, Y. H. Engineering ordered and nonordered porous noble metal nanostructures: Synthesis, assembly, and their applications in electrochemistry. Chem. Rev. 2015, 115, 8896–8943.

    Article  Google Scholar 

  30. Yang, T.; Ma, Y. X.; Huang, Q. L.; Cao, G. J. Palladium–iridium nanocrystals for enhancement of electrocatalytic activity toward oxygen reduction reaction. Nano Energy 2016, 19, 257–268.

    Article  Google Scholar 

  31. Wang, L.; Yamauchi, Y. Metallic nanocages: Synthesis of bimetallic Pt–Pd hollow nanoparticles with dendritic shells by selective chemical etching. J. Am. Chem. Soc. 2013, 135, 16762–16765.

    Article  Google Scholar 

  32. Jiang, B.; Li, C. L.; Malgras, V.; Imura, M.; Tominakaa, S.; Yamauchi, Y. Mesoporous Pt nanospheres with designed pore surface as highly active electrocatalyst. Chem. Sci. 2016, 7, 1575–1581.

    Article  Google Scholar 

  33. Wang, L.; Nemoto, Y.; Yamauchi, Y. Direct synthesis of spatially-controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity. J. Am. Chem. Soc. 2011, 133, 9674–9677.

    Article  Google Scholar 

  34. Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.

    Article  Google Scholar 

  35. Wang, D.-Y.; Chou, H.-L.; Cheng, C.-C.; Wu, Y.-H.; Tsai, C.-M.; Lin, H.-Y.; Wang, Y.-L.; Hwang, B.-J.; Chen, C.-C. Fept nanodendrites with high-index facets as active electrocatalysts for oxygen reduction reaction. Nano Energy 2015, 11, 631–639.

    Article  Google Scholar 

  36. Li, F.-M.; Gao, X.-Q.; Li, S.-N.; Chen, Y.; Lee, J.-M. Thermal decomposition synthesis of functionalized pdpt alloy nanodendrites with high selectivity for oxygen reduction reaction. NPG Asia Mater. 2015, 7, e219.

    Article  Google Scholar 

  37. Gong, M. X.; Fu, G. T.; Chen, Y.; Tang, Y. W.; Lu, T. H. Autocatalysis and selective oxidative etching induced synthesis of platinum–copper bimetallic alloy nanodendrites electrocatalysts. ACS Appl. Mater. Interfaces 2014, 6, 7301–7308.

    Article  Google Scholar 

  38. Guo, W. S.; Pleixats, R.; Shafir, A.; Parella, T. Rhodium nanoflowers stabilized by a nitrogen-rich peg-tagged substrate as recyclable catalyst for the stereoselective hydrosilylation of internal alkynes. Adv. Synth. Catal. 2015, 357, 89–99.

    Article  Google Scholar 

  39. Yuan, Q.; Wang, X. Aqueous-based route toward noble metal nanocrystals: Morphology-controlled synthesis and their applications. Nanoscale 2010, 2, 2328–2335.

    Article  Google Scholar 

  40. Feng, Y.; Ma, X. H.; Han, L.; Peng, Z. J.; Yang, J. A universal approach to the synthesis of nanodendrites of noble metals. Nanoscale 2014, 6, 6173–6179.

    Article  Google Scholar 

  41. Zhang, H.; Li, W. Y.; Jin, M. S.; Zeng, J.; Yu, T.; Yang, D. R.; Xia, Y. N. Controlling the morphology of rhodium nanocrystals by manipulating the growth kinetics with a syringe pump. Nano Lett. 2011, 11, 898–903.

    Article  Google Scholar 

  42. Zhang, H.; Xia, X. H.; Li, W. Y.; Zeng, J.; Dai, Y. Q.; Yang, D. R.; Xia, Y. N. Facile synthesis of five-fold twinned, starfish-like rhodium nanocrystals by eliminating oxidative etching with a chloride-free precursor. Angew. Chem., Int. Ed. 2010, 49, 5296–5300.

    Article  Google Scholar 

  43. Yu, N. F.; Tian, N.; Zhou, Z. Y.; Huang, L.; Xiao, J.; Wen, Y. H.; Sun, S. G. Electrochemical synthesis of tetrahexahedral rhodium nanocrystals with extraordinarily high surface energy and high electrocatalytic activity. Angew. Chem., Int. Ed. 2014, 53, 5097–5101.

    Google Scholar 

  44. Mohamed, H. D. A.; Watson, S. M. D.; Horrocks, B. R.; Houlton, A. Chemical and electrochemical routes to DNAtemplated rhodium nanowires. J. Mater. Chem. C 2015, 3, 438–446.

    Article  Google Scholar 

  45. Jiang, Y. Q.; Su, J. Y.; Yang, Y.; Jia, Y. Y.; Chen, Q. L.; Xie, Z. X.; Zheng, L. S. A facile surfactant-free synthesis of Rh flower-like nanostructures constructed from ultrathin nanosheets and their enhanced catalytic properties. Nano Res. 2016, 9, 849–856.

    Article  Google Scholar 

  46. Zhao, L.; Xu, C. F.; Su, H. F.; Liang, J. H.; Lin, S. C.; Gu, L.; Wang, X. L.; Chen, M.; Zheng, N. F. Single-crystalline rhodium nanosheets with atomic thickness. Adv. Sci. 2015, 2, 1500100.

    Article  Google Scholar 

  47. Duan, H. H.; Yan, N.; Yu, R.; Chang, C. R.; Zhou, G.; Hu, H. S.; Rong, H. P.; Niu, Z. Q.; Mao, J. J.; Asakura, H. et al. Ultrathin rhodium nanosheets. Nat. Commun. 2014, 5, 3093.

    Google Scholar 

  48. Mazumder, V.; Sun, S. H. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J. Am. Chem. Soc. 2009, 131, 4588–4589.

    Article  Google Scholar 

  49. Fu, G. T.; Jiang, X.; Gong, M. X.; Chen, Y.; Tang, Y. W.; Lin, J.; Lu, T. H. Highly branched platinum nanolance assemblies by polyallylamine functionalization as superior active, stable, and alcohol-tolerant oxygen reduction electrocatalysts. Nanoscale 2014, 6, 8226–8234.

    Article  Google Scholar 

  50. Lim, B.; Xia, Y. N. Metal nanocrystals with highly branched morphologies. Angew. Chem., Int. Ed. 2011, 50, 76–85.

    Article  Google Scholar 

  51. Ortiz, N.; Skrabalak, S. E. Manipulating local ligand environments for the controlled nucleation of metal nanoparticles and their assembly into nanodendrites. Angew. Chem., Int. Ed. 2012, 51, 11757–11761.

    Article  Google Scholar 

  52. Watt, J.; Cheong, S.; Tilley, R. D. How to control the shape of metal nanostructures in organic solution phase synthesis for plasmonics and catalysis. Nano Today 2013, 8, 198–215.

    Article  Google Scholar 

  53. Gao, X. Q.; Li, Y. M.; Zhang, Q.; Li, S. N.; Chen, Y.; Lee, J.-M. Polyethyleneimine-assisted synthesis of high-quality platinum/graphene hybrids: The effect of molecular weight on electrochemical properties. J. Mater. Chem. A 2015, 3, 12000–12004.

    Article  Google Scholar 

  54. Bai, J.; Fang, C. L.; Liu, Z. H.; Chen, Y. A one-pot gold seedassisted synthesis of gold/platinum wire nanoassemblies and their enhanced electrocatalytic activity for the oxidation of oxalic acid. Nanoscale 2016, 8, 2875–2880.

    Article  Google Scholar 

  55. Xu, G.-R.; Liu, F.-Y.; Liu, Z.-H.; Chen, Y. Ethanol-tolerant polyethyleneimine functionalized palladium nanowires in alkaline media: The “molecular window gauze” induced the selectivity for the oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 21083–21089.

    Article  Google Scholar 

  56. Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.

    Article  Google Scholar 

  57. Jang, K.; Kim, H. J.; Son, S. U. Low-temperature synthesis of ultrathin rhodium nanoplates via molecular orbital symmetry interaction between rhodium precursors. Chem. Mater. 2010, 22, 1273–1275.

    Article  Google Scholar 

  58. Hou, C. P.; Zhu, J.; Liu, C.; Wang, X.; Kuang, Q.; Zheng, L. S. Formaldehyde-assisted synthesis of ultrathin Rh nanosheets for applications in COoxidation. CrystEngComm 2013, 15, 6127–6130.

    Article  Google Scholar 

  59. Qi, Y.; Wu, J. B.; Zhang, H.; Jiang, Y. Y.; Jin, C. H.; Fu, M. S.; Yang, H.; Yang, D. R. Facile synthesis of Rh–Pd alloy nanodendrites as highly active and durable electrocatalysts for oxygen reduction reaction. Nanoscale 2014, 6, 7012–7018.

    Article  Google Scholar 

  60. Zhang, L.; Niu, W. X.; Gao, W. Y.; Qi, L. M.; Lai, J. P.; Zhao, J. M.; Xu, G. B. Synthesis of convex hexoctahedral palladium@gold core–shell nanocrystals with {431} highindex facets with remarkable electrochemiluminescence activities. ACS Nano 2014, 8, 5953–5958.

    Article  Google Scholar 

  61. Quan, Z.; Wang, Y.; Fang, J. High-index faceted noble metal nanocrystals. Acc. Chem. Res. 2013, 46, 191–202.

    Article  Google Scholar 

  62. Yu, T.; Kim, D. Y.; Zhang, H.; Xia, Y. N. Platinum concave nanocubes with high-index facets and their enhanced activity for oxygen reduction reaction. Angew. Chem., Int. Ed. 2011, 50, 2773–2777.

    Article  Google Scholar 

  63. Huang, X. Q.; Zhao, Z. P.; Fan, J. M.; Tan, Y. M.; Zheng, N. F. Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J. Am. Chem. Soc. 2011, 133, 4718–4721.

    Article  Google Scholar 

  64. Tian, N.; Zhou, Z.-Y.; Sun, S.-G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with highindex facets and high electro-oxidation activity. Science 2007, 316, 732–735.

    Article  Google Scholar 

  65. Deng, Y.-J.; Tian, N.; Zhou, Z.-Y.; Huang, R.; Liu, Z.-L.; Xiao, J.; Sun, S.-G. Alloy tetrahexahedral Pd–Pt catalysts: Enhancing significantly the catalytic activity by synergy effect of high-index facets and electronic structure. Chem. Sci. 2012, 3, 1157–1161.

    Article  Google Scholar 

  66. Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. D. Highly concave platinum nanoframes with high-index facets and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2013, 52, 12337–12340.

    Article  Google Scholar 

  67. Xu, X. L.; Zhang, X.; Sun, H.; Yang, Y.; Dai, X. P.; Gao, J. S.; Li, X. Y.; Zhang, P. F.; Wang, H. H.; Yu, N. F. et al. Synthesis of Pt–Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew. Chem. 2014, 126, 12730–12735.

    Article  Google Scholar 

  68. Funatsu, A.; Tateishi, H.; Hatakeyama, K.; Fukunaga, Y.; Taniguchi, T.; Koinuma, M.; Matsuura, H.; Matsumoto, Y. Synthesis of monolayer platinum nanosheets. Chem. Commun. 2014, 50, 8503–8506.

    Article  Google Scholar 

  69. Li, H.; Chen, G. X.; Yang, H. Y.; Wang, X. L.; Liang, J. H.; Liu, P. X.; Chen, M.; Zheng, N. F. Shape-controlled synthesis of surface-clean ultrathin palladium nanosheets by simply mixing a dinuclear PdI carbonyl chloride complex with H2O. Angew. Chem., Int. Ed. 2013, 52, 8368–8372.

    Article  Google Scholar 

  70. Saleem, F.; Xu, B.; Ni, B.; Liu, H. L.; Nosheen, F.; Li, H. Y.; Wang, X. Atomically thick Pt-Cu nanosheets: Self-assembled sandwich and nanoring-like structures. Adv. Mater. 2015, 27, 2013–2018.

    Article  Google Scholar 

  71. Saleem, F.; Zhang, Z. C.; Xu, B.; Xu, X. B.; He, P. L.; Wang, X. Ultrathin Pt-Cu nanosheets and nanocones. J. Am. Chem. Soc. 2013, 135, 18304–18307.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pujun Ji or Yu Chen.

Electronic supplementary material

12274_2016_1258_MOESM1_ESM.pdf

Unexpected catalytic activity of rhodium nanodendrites with nanosheet subunits for methanol electrooxidation in an alkaline medium

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., Li, F., Li, S. et al. Unexpected catalytic activity of rhodium nanodendrites with nanosheet subunits for methanol electrooxidation in an alkaline medium. Nano Res. 9, 3893–3902 (2016). https://doi.org/10.1007/s12274-016-1258-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1258-8

Keywords

Navigation