Skip to main content
Log in

Aerodynamic levitated laser annealing method to defective titanium dioxide with enhanced photocatalytic performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Defective TiO2 has attracted increasing attention for use in photocatalytic and electrochemical materials because of its narrowed band-gap and improved visible-light photocatalytic activity. However, a facile and efficient approach for obtaining defect-rich TiO2 still remains a challenge. Herein, we demonstrate such an approach to narrow its bandgap and improve visible-light absorption through implanting abundant defects by aerodynamic levitated laser annealing (ALLA) treatment. Note that the ALLA method not only provides rapid annealing, solidifying and cooling process, but also exhibits high efficiency for homogeneous and defective TiO2 nanoparticles. The laser-annealed TiO2 achieves a high hydrogen evolution rate of 8.54 mmol·h–1·g–1, excellent decomposition properties within 60 min, and outstanding recyclability and stability, all of which are superior to the corresponding properties of commercial P25.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    Article  Google Scholar 

  2. Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.

    Article  Google Scholar 

  3. Fresno, F.; Portela, R.; Suárez, S.; Coronado, J. M. Photocatalytic materials: Recent achievements and near future trends. J. Mater. Chem. A 2014, 2, 2863–2884.

    Article  Google Scholar 

  4. Queisser, H. J.; Haller, E. E. Defects in semiconductors: Some fatal, some vital. Science 1998, 281, 945–950.

    Article  Google Scholar 

  5. Serpone, N.; Emeline, A. V. Semiconductor photocatalysis—Past, present, and future outlook. J. Phys. Chem. Lett. 2012, 3, 673–677.

    Article  Google Scholar 

  6. Zhu, Q.; Peng, Y.; Lin, L.; Fan, C. M.; Gao, G. Q.; Wang, R. X.; Xu, A. W. Stable blue TiO2–x nanoparticles for efficient visible light photocatalysts. J. Mater. Chem. A. 2014, 2, 4429–4437.

    Article  Google Scholar 

  7. Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600–7603.

    Article  Google Scholar 

  8. Ren, R.; Wen, Z. H.; Cui, S. M.; Hou, Y.; Guo, X. R.; Chen, J. H. Controllable synthesis and tunable photocatalytic properties of Ti3+-doped TiO2. Sci. Rep. 2015, 5, 10714.

    Article  Google Scholar 

  9. Fan, C. Y.; Chen, C.; Wang, J.; Fu, X. X.; Ren, Z. M.; Qian, G. D.; Wang, Z. Y. Black hydroxylated titanium dioxide prepared via ultrasonication with enhanced photocatalytic activity. Sci. Rep. 2015, 5, 11712.

    Article  Google Scholar 

  10. Liu, B.; Chen, H. M.; Liu, C.; Andrews, S. C.; Hahn, C.; Yang, P. D. Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential. J. Am. Chem. Soc. 2013, 135, 9995–9998.

    Article  Google Scholar 

  11. Inturi, S. N. R.; Boningari, T.; Suidan, M.; Smirniotis, P. G. Flame aerosol synthesized Cr incorporated TiO2 for visible light photodegradation of gas phase acetonitrile. J. Phys. Chem. C 2014, 118, 231–242.

    Article  Google Scholar 

  12. Ghosh, R.; Hara, Y.; Alibabaei, L.; Hanson, K.; Rangan, S.; Bartynski, R.; Meyer, T. J.; Lopez, R. Increasing photocurrents in dye sensitized solar cells with tantalum-doped titanium oxide photoanodes obtained by laser ablation. ACS Appl. Mater. Interfaces 2012, 4, 4566–4570.

    Article  Google Scholar 

  13. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271.

    Article  Google Scholar 

  14. Hoang, S.; Guo, S. W.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett. 2012, 12, 26–32.

    Article  Google Scholar 

  15. Hamilton, J. W. J.; Byrne, J. A. Dunlop, P. S. M.; Dionysiou, D. D.; Pelaez, M.; O’Shea, K.; Synnott, D.; Pillai, S. C. Evaluating the mechanism of visible light activity for N, F-TiO2 using photoelectrochemistry. J. Phys. Chem. C 2014, 118, 12206–12215.

    Article  Google Scholar 

  16. Dorenbos, P. The Electronic structure of lanthanide impurities in TiO2, ZnO, SnO2, and related compounds. ECS J. Solid State Sci. Technol. 2014, 3, R19–R24.

    Article  Google Scholar 

  17. Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229.

    Article  Google Scholar 

  18. Yin, J. B.; Zhao, X. P. Temperature effect of rare earthdoped TiO2 electrorheological fluids. J. Phys. D: Appl. Phys. 2001, 34, 2063–2067.

    Article  Google Scholar 

  19. Zhang, Q. Y.; Gao, T. T.; Andino, J. M.; Li, Y. Copper and iodine co-modified TiO2 nanoparticles for improved activity of CO2 photoreduction with water vapor. Appl. Catal. B. Environ. 2012, 123–124, 257–264.

    Article  Google Scholar 

  20. Wu, X. Y.; Yin, S.; Dong, Q.; Guo, C. S.; Kimura, T.; Matsushita, J. I.; Sato, T. Photocatalytic properties of Nd and C codoped TiO2 with the whole range of visible light absorption. J. Phys. Chem. C 2013, 117, 8345–8352.

    Article  Google Scholar 

  21. Chen, X. B.; Liu, L.; Huang, F. Q. Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 2015, 44, 1861–1885.

    Article  Google Scholar 

  22. Mocatta, D.; Cohen, G.; Schattner, J.; Millo, O.; Rabani, E.; Banin, U. Heavily doped semiconductor nanocrystal quantum dots. Science 2011, 332, 77–81.

    Article  Google Scholar 

  23. Yang, C. Y.; Wang, Z.; Lin, T. Q.; Yin, H.; Lü, X. J.; Wan, D. Y.; Xu, L.; Zheng, C.; Lin, J. H.; Huang, F. Q. et al. Core–shell nanostructured “black” rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. J. Am. Chem. Soc. 2013, 135, 17831–17838.

    Article  Google Scholar 

  24. Ronning, C.; Borschel, C.; Geburt, S.; Niepelt, R. Ion beam doping of semiconductor nanowires. Mater. Sci. Eng. Res. 2010, 70, 30–43.

    Article  Google Scholar 

  25. Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.

    Article  Google Scholar 

  26. Devi, M.; Panigrahi, M. R.; Singh, U. P. Microstructures, optical and electrical properties of TiO2 thin films prepared by unconventional sol–gel route. J. Mater. Sci.: Mater. El. 2015, 26, 1186–1191.

    Google Scholar 

  27. Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductorbased photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.

    Article  Google Scholar 

  28. Chen, X. B.; Li, C.; Grätzel, M.; Kostecki, R.; Mao, S. S. Nanomaterials for renewable energy production and storage. Chem. Soc. Rev. 2012, 41, 7909–7939.

    Article  Google Scholar 

  29. Pan, X. Y.; Yang, M. Q.; Fu, X. Z.; Zhang, N.; Xu, Y. J. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601–3614.

    Article  Google Scholar 

  30. Khan, Z.; Khannam, M.; Vinothkumar, N.; De, M.; Qureshi, M. Hierarchical 3D NiO-CdS heteroarchitecture for efficient visible light photocatalytic hydrogen generation. J. Mater. Chem. 2012, 22, 12090–12095.

    Article  Google Scholar 

  31. Li, L. D.; Yan, J. Q.; Wang, T.; Zhao, Z. J.; Zhang, J.; Gong, J. L.; Guan, N. J. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat. Commun. 2015, 6, 5881.

    Article  Google Scholar 

  32. Orendorz, A.; Brodyanski, A.; Lö sch, J.; Bai, L. H.; Chen, Z. H.; Le, Y. K.; Ziegler, C.; Gnaser, H. Phase transformation and particle growth in nanocrystalline anatase TiO2 films analyzed by X-ray diffraction and Raman spectroscopy. Surf. Sci. 2007, 601, 4390–4394.

    Article  Google Scholar 

  33. Porto, S. S. P.; Fleury, P. A.; Damen, T. C. Raman spectra of TiO2, MgF2, ZnF2 FeF2, and MnF2. Phys. Rev. 1967, 154, 522–526.

    Article  Google Scholar 

  34. Zhou, Y.; Yu, S. H.; Wang, C. Y.; Li, X. G.; Zhu, Y. R.; Chen, Z. Y. A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites. Adv. Mater. 1999, 11, 850–852.

    Article  Google Scholar 

  35. Rossella, F.; Galinetto, P.; Mozzati, M. C.; Malavasi, L.; Fernandez, Y. D.; Drera, G.; Sangaletti, L. TiO2 thin films for spintronics application: A Raman study. J. Raman Spectrosc. 2010, 41, 558–565.

    Article  Google Scholar 

  36. Ou, G.; Li, Z. W.; Li, D. K.; Cheng, L.; Liu, Z.; Wu, H. Photothermal therapy by using titanium oxide nanoparticles. Nano Res. 2016, 9, 1236–1243.

    Article  Google Scholar 

  37. Li, J. Y.; Li, J. Q.; Li, B.; Yu, J. D.; Qi, L. H. An upconversion niobium pentoxide bulk glass codoped with Er3+/Yb3+ fabricated by aerodynamic levitation method. J. Am. Ceram. Soc. 2015, 98, 1865–1869.

    Article  Google Scholar 

  38. Ma, X. G.; Peng, Z. J.; Li, J. Q. Effect of Ta2O5 substituting on thermal and optical properties of high refractive index La2O3–Nb2O5 glass system prepared by aerodynamic levitation method. J. Am. Ceram. Soc. 2014, 98, 770–773.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianqiang Li or Hui Wu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., Ma, X., Gu, L. et al. Aerodynamic levitated laser annealing method to defective titanium dioxide with enhanced photocatalytic performance. Nano Res. 9, 3839–3847 (2016). https://doi.org/10.1007/s12274-016-1253-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1253-0

Keywords

Navigation