Skip to main content
Log in

Multi-dimensional, light-controlled switch of fluorescence resonance energy transfer based on orderly assembly of 0D dye@micro-micelles and 2D ultrathin-layered nanosheets

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Fluorescence resonance energy transfer (FRET) systems have broad applications in visual detection, intelligent materials, and biological imaging, all of which favor the transmission of light through multiple dimensions and in diverse directions. Herein, we have demonstrated multi-dimensional (0D and 2D) FRET within a multi-layer ultrathin film (UTF) by employing a layer-by-layer (LBL) assembly technique. The anionic block copolymer micelle poly(tert-butyl acrylate-co-ethyl acrylate-co-methacrylic acid) (PTBEM) is chosen as a molecular carrier for the incorporation of bis(8-hydroxyquinolate) zinc (Znq2) and open-ring merocyanine (MC) (denoted as (Znq2/MC)@PTBEM). Alternatively, electrostatic assembly is performed with cationic layered double hydroxide (LDH) nanosheets (denoted as [(Znq2/MC)@PTBEM/LDH] n ). This [(Znq2/MC)@PTBEM/LDH] n system offers a multi-dimensional propagation medium and ensures that the FRET donor and acceptor are located within their Förster radii in each direction. The system demonstrates a FRET process that can be switched via alternating ultraviolet/visible (UV/vis) irradiation, with tunable blue–green/red fluorescence, resulting in a FRET efficiency as high as 81.7%. It is expected that this assembly method, which uses 0D micelles on a 2D layered material, can be extended to other systems for further development of multi-dimensional FRET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Highefficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. Nature 2000, 403, 750–753.

    Article  Google Scholar 

  2. Giepmans, B. N. G.; Adams, S. R.; Ellisman, M. H.; Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 2006, 312, 217–224.

    Article  Google Scholar 

  3. Jin, Y. H.; Ye, F. M.; Zeigler, M.; Wu, C. F.; Chiu, D. T. Near-infrared fluorescent dye-doped semiconducting polymer dots. ACS Nano 2011, 5, 1468–1475.

    Article  Google Scholar 

  4. Gao, B.; Lin, Y.; Wei, S. J.; Zeng, J.; Liao, Y.; Chen, L. G.; Goldfeld, D.; Wang, X. P.; Luo, Y.; Dong, Z. C. et al. Charge transfer and retention in directly coupled Au-CdSe nanohybrids. Nano Res. 2011, 5, 88–98.

    Article  Google Scholar 

  5. Li, Z. Q.; Zhang, Y.; Jiang, S. Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv. Mater. 2008, 20, 4765–4769.

    Article  Google Scholar 

  6. Stewart, G. M.; Fox, M. A. Chromophore-labeled dendrons as light harvesting antennae. J. Am. Chem. Soc. 1996, 118, 4354–4360.

    Article  Google Scholar 

  7. Adronov, A.; Fréchet, J. M. J. Light-harvesting dendrimers. Chem. Commun. 2000, 1701–1710.

    Google Scholar 

  8. Wada, Y.; Sato, M.; Tsukahara, Y. Fine control of red–green–blue photoluminescence in zeolites incorporated with rare-earth ions and a photosensitizer. Angew. Chem., Int. Ed. 2006, 45, 1925–1928.

    Article  Google Scholar 

  9. Lowman, G. M.; Daoud, N.; Case, R. M.; Carson, P. J.; Buratto, S. K. Local energy transfer in self-assembled polyelectrolyte thin films probed by near-field optics. Nano Lett. 2001, 1, 677–682.

    Article  Google Scholar 

  10. Chen, H. W.; Zou, P.; Connarn, J.; Paholak, H.; Sun, D. X. Intracellular dissociation of a polymer coating from nanoparticles. Nano Res. 2012, 5, 815–825.

    Article  Google Scholar 

  11. Pietsch, C.; Schubert, U. S.; Hoogenboom, R. Aqueous polymeric sensors based on temperature-induced polymer phase transitions and solvatochromic dyes. Chem. Commun. 2011, 47, 8750–8765.

    Article  Google Scholar 

  12. Zhu, M. Q.; Zhang, G. F.; Li, C.; Aldred, M. P.; Chang, E.; Drezek, R. A.; Li, A. D. Q. Reversible two-photon photoswitching and two-photon imaging of immunofunctionalized nanoparticles targeted to cancer cells. J. Am. Chem. Soc. 2011, 133, 365–372.

    Article  Google Scholar 

  13. Chung, J. W.; Yoon, S. J.; Lim, S. J.; An, B. K.; Park, S. Y. Dual-mode switching in highly fluorescent organogels: Binary logic gates with optical/thermal inputs. Angew. Chem., Int. Ed. 2009, 48, 7030–7034.

    Article  Google Scholar 

  14. Wu, C. F.; Bull, B.; Christensen, K.; McNeill, J. Ratiometric single-nanoparticle oxygen sensors for biological imaging. Angew. Chem., Int. Ed. 2009, 48, 2741–2745.

    Article  Google Scholar 

  15. Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; Goldman, E. R.; Fisher, B.; Mauro, J. M. Self-assembled nanoscale biosensors based on quantum dot fret donors. Nat. Mater. 2003, 2, 630–638.

    Article  Google Scholar 

  16. Prevo, B.; Peterman, E. J. G. Förster resonance energy transfer and kinesin motor proteins. Chem. Soc. Rev. 2014, 43, 1144–1155.

    Article  Google Scholar 

  17. Hohng, S.; Lee, S.; Lee, J.; Jo, M. H. Maximizing information content of single-molecule fret experiments: Multi-color FRET and FRET combined with force or torque. Chem. Soc. Rev. 2014, 43, 1007–1013.

    Article  Google Scholar 

  18. Yoo, S. I.; An, S. J.; Choi, G. H.; Kim, K. S.; Yi, G. C.; Zin, W. C.; Jung, J. C.; Sohn, B. H. Controlled light emission by nanoencapsulation of fluorophores in thin films of diblock copolymer micelles. Adv. Mater. 2007, 19, 1594–1596.

    Article  Google Scholar 

  19. Yoo, S. I.; Lee, J.-H.; Sohn, B.-H.; Eom, I.; Joo, T.; An, S. J.; Yi, G.-C. Enhancement and concurrence of emissions from multiple fluorophores in a single emitting layer of micellar nanostructures. Adv. Funct. Mater. 2008, 18, 2984–2989.

    Article  Google Scholar 

  20. Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155.

    Article  Google Scholar 

  21. Williams, G. R.; O’Hare, D. Towards understanding, control and application of layered double hydroxide chemistry. J. Mater. Chem. 2006, 16, 3065–3074.

    Article  Google Scholar 

  22. Zhao, X. F.; Xu, S. L.; Wang, L. Y.; Duan, X.; Zhang, F. Z. Exchange-biased NiFe2O4/NiO nanocomposites derived from NiFe-layered double hydroxides as a single precursor. Nano Res. 2010, 3, 200–210.

    Article  Google Scholar 

  23. Liu, Z. P.; Ma, R. Z.; Osada, M.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. Synthesis, anion exchange, and delamination of Co–Al layered double hydroxide: Assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J. Am. Chem. Soc. 2006, 128, 4872–4880.

    Article  Google Scholar 

  24. Yan, D. P.; Lu, J.; Ma, J.; Wei, M.; Evans, D. G.; Duan, X. Reversibly thermochromic, fluorescent ultrathin films with a supramolecular architecture. Angew. Chem., Int. Ed. 2011, 50, 720–723.

    Article  Google Scholar 

  25. Yan, D. P.; Lu, J.; Wei, M.; Han, J. B.; Ma, J.; Li, F.; Evans, D. G.; Duan, X. Ordered poly(p-phenylene)/layered double hydroxide ultrathin films with blue luminescence by layer-by-layer assembly. Angew. Chem., Int. Ed. 2009, 121, 3119–3122.

    Article  Google Scholar 

  26. Li, Z.; Lu, J.; Li, S. D.; Qin, S. H.; Qin, Y. M. Orderly ultrathin films based on perylene/poly(N-vinyl carbazole) assembled with layered double hydroxide nanosheets: 2D fluorescence resonance energy transfer and reversible fluorescence response for volatile organic compounds. Adv. Mater. 2012, 24, 6053–6057.

    Article  Google Scholar 

  27. Harada, Y.; Noguchi, A.; Kishino, A.; Yanagida, T. Sliding movement of single actin filaments on one-headed myosin filaments. Nature 1987, 326, 805–808.

    Article  Google Scholar 

  28. Han, K.; Zhu, J.-Y.; Wang, S.-B.; Li, Z.-H.; Cheng, S.-X.; Zhang, X.-Z. Tumor targeted gold nanoparticles for FRETbased tumor imaging and light responsive on-demand drug release. J. Mater. Chem. B 2015, 3, 8065–8069.

    Article  Google Scholar 

  29. Rasnik, I.; McKinney, S. A.; Ha, T. Nonblinking and longlasting single-molecule fluorescence imaging. Nat. Methods 2006, 3, 891–893.

    Article  Google Scholar 

  30. Ross, J.; Buschkamp, P.; Fetting, D.; Donnermeyer, A.; Roth, C. M.; Tinnefeld, P. Multicolor single-molecule spectroscopy with alternating laser excitation for the investigation of interactions and dynamics. J. Phys. Chem. B 2007, 111, 321–326.

    Article  Google Scholar 

  31. Wei, H. T.; Sun, H. Z.; Zhang, H.; Gao, C.; Yang, B. An effective method to prepare polymer/nanocrystal composites with tunable emission over the whole visible light range. Nano Res. 2010, 3, 496–505.

    Article  Google Scholar 

  32. Mori, M. X.; Imai, Y.; Itsuki, K.; Inoue, R. Quantitative measurement of Ca2+-dependent calmodulin-target binding by Fura-2 and CFP and YFP FRET imaging in living cells. Biochemistry 2011, 50, 4685–4696.

    Article  Google Scholar 

  33. Li, S. D.; Lu, J.; Wei, M.; Evans, D. G.; Duan, X. Tris(8-hydroxyquinoline-5-sulfonate)aluminum intercalated Mg–Al layered double hydroxide with blue luminescence by hydrothermal synthesis. Adv. Funct. Mater. 2010, 20, 2848–2856.

    Article  Google Scholar 

  34. Shi, W. Y.; Lin, Y. J.; Kong, X. G.; Zhang, S. T.; Jia, Y. K.; Wei, M.; Evans, D. G.; Duan, X. Fabrication of pyrenetetrasulfonate/layered double hydroxide ultrathin films and their application in fluorescence chemosensors. J. Mater. Chem. 2011, 21, 6088–6094.

    Article  Google Scholar 

  35. Tian, R.; Liang, R. Z.; Yan, D. P.; Shi, W. Y.; Yu, X. J.; Wei, M.; Li, L. S.; Evans, D. G.; Duan, X. Intelligent display films with tunable color emission based on a supermolecular architecture. J. Mater. Chem. C 2013, 1, 5654–5660.

    Article  Google Scholar 

  36. Tian, R.; Zhang, S. T.; Li, M. W.; Zhou, Y. Q.; Lu, B.; Yan, D. P.; Wei, M.; Evans, D. G.; Duan, X. Localization of Au nanoclusters on layered double hydroxides nanosheets: Confinement-induced emission enhancement and temperatureresponsive luminescence. Adv. Funct. Mater. 2015, 25, 5006–5015.

    Article  Google Scholar 

  37. Tian, H.; Feng, Y. L. Next step of photochromic switches? J. Mater. Chem. 2008, 18, 1617–1622.

    Article  Google Scholar 

  38. Fuß, W.; Kosmidis, C.; Schmid, W. E.; Trushin, S. A. The photochemical Cis-trans isomerization of free stilbene molecules follows a hula-twist pathway. Angew. Chem., Int. Ed. 2004, 43, 4178–4182.

    Article  Google Scholar 

  39. Klajn, R. Spiropyran-based dynamic materials. Chem. Soc. Rev. 2014, 43, 148–184.

    Article  Google Scholar 

  40. Zhu, L. Y.; Zhu, M. Q.; Hurst, J. K.; Li, A. D. Q. Lightcontrolled molecular switches modulate nanocrystal fluorescence. J. Am. Chem. Soc. 2005, 127, 8968–8970.

    Article  Google Scholar 

  41. Li, C. H.; Zhang, Y. X.; Hu, J. M.; Cheng, J. J.; Liu, S. Y. Reversible three-state switching of multicolor fluorescence emission by multiple stimuli modulated FRET processes within thermoresponsive polymeric micelles. Angew. Chem., Int. Ed. 2010, 122, 5246–5250.

    Article  Google Scholar 

  42. Chen, J.; Zeng, F.; Wu, S. Z.; Zhao, J. Q.; Chen, Q. M.; Tong, Z. Reversible fluorescence modulation through energy transfer with ABC triblock copolymer micelles as scaffolds. Chem. Commun. 2008, 5580–5582.

    Google Scholar 

  43. Clapp, A. R.; Medintz, I. L.; Mauro, J. M.; Fisher, B. R.; Bawendi, M. G.; Mattoussi, H. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J. Am. Chem. Soc. 2004, 126, 301–310.

    Article  Google Scholar 

  44. Medintz, I. L.; Mattoussi, H. Quantum dot-based resonance energy transfer and its growing application in biology. Phys. Chem. Chem. Phys. 2009, 11, 17–45.

    Article  Google Scholar 

  45. Medintz, I. L.; Trammell, S. A.; Mattoussi, H.; Mauro, J. M. Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor. J. Am. Chem. Soc. 2004, 126, 30–31.

    Article  Google Scholar 

  46. O’Leary, S.; O’Hare, D.; Seeley, G. Delamination of layered double hydroxides in polar monomers: New LDH-acrylate nanocomposites. Chem. Commun. 2002, 1506–1507.

    Google Scholar 

  47. Qiu, L. Z.; Chen, W.; Qu, B. J. Structural characterisation and thermal properties of exfoliated polystyrene/ZnAl layered double hydroxide nanocomposites prepared via solution intercalation. Polym. Degrad. Stab. 2005, 87, 433–440.

    Article  Google Scholar 

  48. Li, B. G.; Hu, Y.; Zhang, R.; Chen, Z. Y.; Fan, W. C. Preparation of the poly(vinyl alcohol)/layered double hydroxide nanocomposite. Mater. Res. Bull. 2003, 38, 1567–1572.

    Article  Google Scholar 

  49. Zhang, C. Y.; Johnson, L. W. Quantum dot-based fluorescence resonance energy transfer with improved fret efficiency in capillary flows. Anal. Chem. 2006, 78, 5532–5537.

    Article  Google Scholar 

  50. Locke, A. K.; Cummins, B. M.; Coté, G. L. High affinity mannotetraose as an alternative to dextran in ConA based fluorescent affinity glucose assay due to improved FRET efficiency. ACS Sens. 2016, 1, 584–590.

    Article  Google Scholar 

  51. Baillet, G.; Giusti, G.; Guglielmetti, R. Comparative photodegradation study between spiro[indoline-oxazine]_and spiro[indoline-pyran]_derivatives in solution. J. Photochem. Photobiol. A: Chem. 1993, 70, 157–161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongpeng Yan or Min Wei.

Electronic supplementary material

12274_2016_1252_MOESM1_ESM.pdf

Multi-dimensional, light-controlled switch of fluorescence resonance energy transfer based on orderly assembly of 0D dye@micro-micelles and 2D ultrathin-layered nanosheets

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Liang, R., Xu, S. et al. Multi-dimensional, light-controlled switch of fluorescence resonance energy transfer based on orderly assembly of 0D dye@micro-micelles and 2D ultrathin-layered nanosheets. Nano Res. 9, 3828–3838 (2016). https://doi.org/10.1007/s12274-016-1252-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1252-1

Keywords

Navigation