Skip to main content
Log in

Flexible and transparent triboelectric nanogenerator based on high performance well-ordered porous PDMS dielectric film

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A flexible and transparent triboelectric nanogenerator (FT-TENG) has great potential for application in self-powered biosensor systems, electronic skin and wearable electronic devices. However, improving the output performance with little damage to its optical properties is challenging. Herein, we have developed an FT-TENG that has a well-ordered nest-like porous polydimethylsiloxane (NP-PDMS) film and graphene transparent electrodes. The NP-PDMS film with ordered pores is fabricated by hydrochloric acid etching of 500 nm sized ZnO spheres made of aggregated nanoparticles, having a light transmittance of 81.8% and a water contact angle of 118.62°. The FT-TENG based on the NP-PDMS film with a porosity of 12%, gives a maximum output of 271 V and 7.8 μA, which are respectively, 3.7 and 2.1-fold of those of a TENG with a flat PDMS film. The peak output power reaches 0.39 mW with a load resistance of 9.01 MΩ. The dielectric constant and effective thickness of the NP-PDMS film and the capacitance and charge transfer of the FT-TENG are systematically investigated. This work provides a novel and effective method to enhance the performance of FT-TENGs with little damage to their optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jeong, C. K.; Park, K. I.; Son, J. H.; Hwang, G. T.; Lee, S. H.; Park, D. Y.; Lee, H. E.; Lee, H. K.; Byun, M.; Lee, K. J. Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy Environ. Sci. 2014, 7, 4035–4043.

    Article  Google Scholar 

  2. Jeong, C. K.; Lee, J.; Han, S.; Ryu, J.; Hwang, G. T.; Park, D. Y.; Park, J. H.; Lee, S. S.; Byun, M.; Ko, S. H. et al. A hyper-stretchable elastic-composite energy harvester. Adv. Mater. 2015, 27, 2866–2875.

    Article  Google Scholar 

  3. Hinchet, R.; Seung, W.; Kim, S.-W. Recent progress on flexible triboelectric nanogenerators for self-powered electronics. ChemSusChem 2015, 8, 2327–2344.

    Article  Google Scholar 

  4. Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492.

    Article  Google Scholar 

  5. Kim, S.; Gupta, M. K.; Lee, K. Y.; Sohn, A.; Kim, T. Y.; Shin, K.-S.; Kim, D.; Kim, S. K.; Lee, K. H.; Shin, H.-J. et al. Transparent flexible graphene triboelectric nanogenerators. Adv. Mater. 2014, 26, 3918–3925.

    Article  Google Scholar 

  6. Zhou, T.; Zhang, L. M.; Xue, F.; Tang, W.; Zhang, C.; Wang, Z. L. Multilayered electret films based triboelectric nanogenerator. Nano Res. 2016, 9, 1442–1451.

    Article  Google Scholar 

  7. Zhong, J. W.; Zhang, Y.; Zhong, Q. Z.; Hu, Q. Y.; Hu, B.; Wang, Z. L.; Zhou, J. Fiber-based generator for wearable electronics and mobile medication. ACS Nano 2014, 8, 6273–6280.

    Article  Google Scholar 

  8. Zhang, L. M.; Xue, F.; Du, W. M.; Han, C. B.; Zhang, C.; Wang, Z. L. Transparent paper-based triboelectric nanogenerator as a page mark and anti-theft sensor. Nano Res. 2014, 7, 1215–1223.

    Article  Google Scholar 

  9. Fan, F.-R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and selfpowered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.

    Article  Google Scholar 

  10. Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.

    Article  Google Scholar 

  11. Guo, H. Y.; Wen, Z.; Zi, Y. L.; Yeh, M. H.; Wang, J.; Zhu, L. P.; Hu, C. G.; Wang, Z. L. A water-proof triboelectric–electromagnetic hybrid generator for energy harvesting in harsh environments. Adv. Energy Mater. 2016, 6, 1501593.

    Article  Google Scholar 

  12. Wang, J.; Li, X. H.; Zi, Y. L.; Wang, S. H.; Li, Z. L.; Zheng, L.; Yi, F.; Li, S. M.; Wang, Z. L. A flexible fiberbased supercapacitor–triboelectric-nanogenerator power system for wearable electronics. Adv. Mater. 2015, 27, 4830–4836.

    Article  Google Scholar 

  13. Huang, L. B.; Bai, G. X.; Wong, M. C.; Yang, Z. B.; Xu, W.; Hao, J. H. Magnetic-assisted noncontact triboelectric nanogenerator converting mechanical energy into electricity and light emissions. Adv. Mater. 2016, 28, 2744–2751.

    Article  Google Scholar 

  14. Guo, H. Y.; He, X. M.; Zhong, J. W.; Zhong, Q. Z.; Leng, Q.; Hu, C. G.; Chen, J.; Tian, L.; Xi, Y.; Zhou, J. A nanogenerator for harvesting airflow energy and light energy. J. Mater. Chem. A 2014, 2, 2079–2087.

    Article  Google Scholar 

  15. Zi, Y. L.; Wang, J.; Wang, S. H.; Li, S. M.; Wen, Z.; Guo, H. Y.; Wang, Z. L. Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 2016, 7, 10987.

    Article  Google Scholar 

  16. Shin, S.-Y.; Saravanakumar, B.; Ramadoss, A.; Kim, S. J. Fabrication of PDMS-based triboelectric nanogenerator for self-sustained power source application. Int. J. Energ. Res. 2016, 40, 288–297.

    Article  Google Scholar 

  17. Xiao, X. Z.; Lü, C.; Wang, G.; Xu, Y.; Wang, J. P.; Yang, H. Flexible triboelectric nanogenerator from micro-nano structured polydimethylsiloxane. Chem. Res. Chinese U. 2015, 31, 434–438.

    Article  Google Scholar 

  18. Yun, B. K.; Kim, J. W.; Kim, H. S.; Jung, K. W.; Yi, Y.; Jeong, M.-S.; Ko, J.-H.; Jung, J. H. Base-treated polydimethylsiloxane surfaces as enhanced triboelectric nanogenerators. Nano Energy 2015, 15, 523–529.

    Article  Google Scholar 

  19. Fan, F. R.; Luo, J. J.; Tang, W.; Li, C. Y.; Zhang, C. P.; Tian, Z. Q.; Wang, Z. L. Highly transparent and flexible triboelectric nanogenerators: Performance improvements and fundamental mechanisms. J. Mater. Chem. A 2014, 2, 13219–13225.

    Article  Google Scholar 

  20. Seung, W.; Gupta, M. K.; Lee, K. Y.; Shin, K.-S.; Lee, J.-H.; Kim, T. Y.; Kim, S.; Lin, J. J.; Kim, J. H.; Kim, S.-W. Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 2015, 9, 3501–3509.

    Article  Google Scholar 

  21. Lee, S. H.; Ko, Y. H.; Yu, J. S. Facile fabrication and characterization of arch-shaped triboelectric nanogenerator with a graphite top electrode. Phys. Status Solidi A 2015, 212, 401–405.

    Article  Google Scholar 

  22. Jang, D. J.; Kim, Y.; Kim, T. Y.; Koh, K.; Jeong, U.; Cho, J. Force-assembled triboelectric nanogenerator with highhumidity-resistant electricity generation using hierarchical surface morphology. Nano Energy 2016, 20, 283–293.

    Article  Google Scholar 

  23. Lee, S.; Ko, W.; Oh, Y.; Lee, J.; Baek, G.; Lee, Y.; Sohn, J.; Cha, S.; Kim, J.; Park, J.; Hong, J. Triboelectric energy harvester based on wearable textile platforms employing various surface morphologies. Nano Energy 2015, 12, 410–418.

    Article  Google Scholar 

  24. Zhu, Y. B.; Yang, B.; Liu, J. Q.; Wang, X. Z.; Chen, X.; Yang, C. S. An integrated flexible harvester coupled triboelectric and piezoelectric mechanisms using PDMS/MWCNT and PVDF. J. Microelectromech. S. 2015, 24, 513–515.

    Article  Google Scholar 

  25. He, X. M.; Guo, H. Y.; Yue, X. L.; Gao, J.; Xia, Y.; Hu, C. G. Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density. Nanoscale 2015, 7, 1896–1903.

    Article  Google Scholar 

  26. Chun, J.; Kim, J. W.; Jung, W.-S.; Kang, C.-Y.; Kim, S.-W.; Wang, Z. L.; Baik, J. M. Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy Environ. Sci. 2015, 8, 3006–3012.

    Article  Google Scholar 

  27. Chen, J.; Guo, H. Y.; He, X. M.; Liu, G. L.; Xi, Y.; Shi, H. F.; Hu, C. G. Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film. ACS Appl. Mater. Interfaces 2016, 8, 736–744.

    Article  Google Scholar 

  28. Lee, K. Y.; Chun, J.; Lee, J. H.; Kim, K. N.; Kang, N. R.; Kim, J. Y.; Kim, M. H.; Shin, K. S.; Gupta, M. K.; Baik, J. M. et al. Hydrophobic sponge structure-based triboelectric nanogenerator. Adv. Mater. 2014, 26, 5037–5042.

    Article  Google Scholar 

  29. Dudem, B.; Ko, Y. H.; Leem, J. W.; Lee, S. H.; Yu, J. S. Highly transparent and flexible triboelectric nanogenerators with subwavelength-architectured polydimethylsiloxane by a nanoporous anodic aluminum oxide template. ACS Appl. Mater. Interfaces 2015, 7, 20520–20529.

    Article  Google Scholar 

  30. Jeong, C. K.; Baek, K. M.; Niu, S. M.; Nam, T. W.; Hur, Y. H.; Park, D. Y.; Hwang, G.-T.; Byun, M.; Wang, Z. L.; Jung, Y. S. et al. Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. Nano Lett. 2014, 14, 7031–7038.

    Article  Google Scholar 

  31. Juárez-Moreno, J. A.; Ávila-Ortega, A.; Oliva, A. I.; Avilés, F.; Cauich-Rodríguez, J. V. Effect of wettability and surface roughness on the adhesion properties of collagen on PDMS films treated by capacitively coupled oxygen plasma. Appl. Surf. Sci. 2015, 349, 763–773.

    Article  Google Scholar 

  32. Peng, F. P.; Ni, Y. R.; Zhou, Q.; Kou, J. H.; Lu, C. H.; Xu, Z. Z. Fabrication of a flexible graphene-TiO2/PDMS photocatalytic film by combining air atmospheric pressure glow discharge treatment. Chem. Eng. Process. 2016, 101, 8–15.

    Article  Google Scholar 

  33. Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, J. Q.; Zhang, H. Graphene-based electrodes. Adv. Mater. 2012, 24, 5979–6004.

    Article  Google Scholar 

  34. Guo, H. Y.; He, X. M.; Hu, C. G.; Tian, Y. S.; Xi, Y.; Chen, J.; Tian, L. Effect of particle size in aggregates of ZnO-aggregate-based dye-sensitized solar cells. Electrochim. Acta 2014, 120, 23–29.

    Article  Google Scholar 

  35. Shahzad, M. I.; Giorcelli, M.; Shahzad, N.; Guastella, S.; Castellino, M.; Jagdale, P.; Tagliaferro, A. Study of carbon nanotubes based polydimethylsiloxane composite films. J. Phys. 2013, 439, 012010.

    Google Scholar 

  36. Mao, Y. C.; Zhao, P.; McConohy, G.; Yang, H.; Tong, Y. X.; Wang, X. D. Sponge-like piezoelectric polymer films for scalable and integratable nanogenerators and self-powered electronic systems. Adv. Energy Mater. 2014, 4, 1301624.

    Article  Google Scholar 

  37. Lee, J. H.; Hinchet, R.; Kim, S. K.; Kim, S.; Kim, S. W. Shape memory polymer-based self-healing triboelectric nanogenerator. Energy Environ. Sci. 2015, 8, 3605–3613.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chenguo Hu or Haofei Shi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Mu, X., Wen, Q. et al. Flexible and transparent triboelectric nanogenerator based on high performance well-ordered porous PDMS dielectric film. Nano Res. 9, 3714–3724 (2016). https://doi.org/10.1007/s12274-016-1242-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1242-3

Keywords

Navigation