Skip to main content
Log in

Self-formation of hexagonal nanotemplates for growth of pyramidal quantum dots by metalorganic vapor phase epitaxy on patterned substrates

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We demonstrate the self-formation of hexagonal nanotemplates on GaAs (111)B substrates patterned with arrays of inverted tetrahedral pyramids during metal-organic vapor phase epitaxy and its role in producing high-symmetry, site-controlled quantum dots (QDs). By combining atomic force microscopy measurements on progressively thicker GaAs epitaxial layers with kinetic Monte Carlo growth simulations, we demonstrate self-maintained symmetry elevation of the QD formation sites from three-fold to six-fold symmetry. This symmetry elevation stems from adatom fluxes directed towards the high-curvature sites of the template, resulting in the formation of a fully three-dimensional hexagonal template after the deposition of relatively thin GaAs layers. We identified the growth conditions for consistently achieving a hexagonal pyramid bottom, which are useful for producing high-symmetry QDs for efficient generation of entangled photons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lodahl, P.; Mahmoodian, S.; Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 2015, 87, 347–400.

    Article  Google Scholar 

  2. Shields, A. J. Semiconductor quantum light sources. Nat. Photonics 2007, 1, 215–223.

    Article  Google Scholar 

  3. Kok, P.; Munro, W. J.; Nemoto, K.; Ralph, T. C.; Dowling, J. P.; Milburn, G. J. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 2007, 79, 135–174.

    Article  Google Scholar 

  4. Faraon, A.; Majumdar, A.; Englund, D.; Kim, E.; Bajcsy, M.; Vuckovic, J. Integrated quantum optical networks based on quantum dots and photonic crystals. New J. Phys. 2011, 13, 055025.

    Article  Google Scholar 

  5. Murray, E.; Ellis, D. J. P.; Meany, T.; Floether, F. F.; Lee, J. P.; Griffiths, J. P.; Jones, G. A. C.; Farrer, I.; Ritchie, D. A.; Bennett, A. J. et al. Quantum photonics hybrid integration platform. Appl. Phys. Lett. 2015, 107, 171108.

    Article  Google Scholar 

  6. Benson, O.; Santori, C.; Pelton, M.; Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 2000, 84, 2513–2516.

    Article  Google Scholar 

  7. Bayer, M.; Ortner, G.; Stern, O.; Kuther, A.; Gorbunov, A. A.; Forchel, A.; Hawrylak, P.; Fafard, S.; Hinzer, K.; Reinecke, T. L. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 2002, 65, 195315.

    Article  Google Scholar 

  8. Young, R. J.; Stevenson, R. M.; Shields, A. J.; Atkinson, P.; Cooper, K.; Ritchie, D. A.; Groom, K. M.; Tartakovskii, A. I.; Skolnick, M. S. Inversion of exciton level splitting in quantum dots. Phys. Rev. B 2005, 72, 113305.

    Article  Google Scholar 

  9. Mlinar, V.; Zunger, A. Effect of atomic-scale randomness on the optical polarization of semiconductor quantum dots. Phys. Rev. B 2009, 79, 115416.

    Article  Google Scholar 

  10. Seguin, R.; Schliwa, A.; Rodt, S.; Pötschke, K.; Pohl, U. W.; Bimberg, D. Size-dependent fine-structure splitting in selforganized InAs/GaAs quantum dots. Phys. Rev. Lett. 2005, 95, 257402.

    Article  Google Scholar 

  11. Singh, R.; Bester, G. Nanowire quantum dots as an ideal source of entangled photon pairs. Phys. Rev. Lett. 2009, 103, 063601.

    Article  Google Scholar 

  12. Juska, G.; Dimastrodonato, V.; Mereni, L. O.; Gocalinska, A.; Pelucchi, E. Towards quantum-dot arrays of entangled photon emitters. Nat. Photonics 2013, 7, 527–531.

    Article  Google Scholar 

  13. Kuroda, T.; Mano, T.; Ha, N.; Nakajima, H.; Kumano, H.; Urbaszek, B.; Jo, M.; Abbarchi, M.; Sakuma, Y.; Sakoda, K. et al. Symmetric quantum dots as efficient sources of highly entangled photons: Violation of Bell’s inequality without spectral and temporal filtering. Phys. Rev. B 2013, 88, 041306.

    Article  Google Scholar 

  14. Juska, G.; Murray, E.; Dimastrodonato, V.; Chung, T. H.; Moroni, S. T.; Gocalinska, A.; Pelucchi, E. Conditions for entangled photon emission from (111)B site-controlled pyramidal quantum dots. J. Appl. Phys. 2015, 117, 134302.

    Article  Google Scholar 

  15. Hughes, B. K.; Luther, J. M.; Beard, M. C. The subtle chemistry of colloidal, quantum-confined semiconductor nanostructures. ACS Nano 2012, 6, 4573–4579.

    Article  Google Scholar 

  16. Kley, A.; Ruggerone, P.; Scheffler, M. Novel diffusion mechanism on the GaAs(001) surface: The role of adatomdimer interaction. Phys. Rev. Lett. 1997, 79, 5278–5281.

    Article  Google Scholar 

  17. Bester, G.; Zunger, A. Cylindrically shaped zinc-blende semiconductor quantum dots do not have cylindrical symmetry: Atomistic symmetry, atomic relaxation, and piezoelectric effects. Phys. Rev. B 2005, 71, 045318.

    Article  Google Scholar 

  18. Schliwa, A.; Winkelnkemper, M.; Lochmann, A.; Stock, E.; Bimberg, D. In(Ga)As/GaAs quantum dots grown on a (111) surface as ideal sources of entangled photon pairs. Phys. Rev. B 2009, 80, 161307(R).

    Article  Google Scholar 

  19. Yamaguchi, H.; Belk, J. G.; Zhang, X. M.; Sudijono, J. L.; Fahy, M. R.; Jones, T. S.; Pashley, D. W.; Joyce, B. A. Atomic-scale imaging of strain relaxation via misfit dislocations in highly mismatched semiconductor heteroepitaxy: InAs/GaAs(111)A. Phys. Rev. B 1997, 55, 1337–1340.

    Article  Google Scholar 

  20. Jo, M.; Mano, T.; Abbarchi, M.; Kuroda, T.; Sakuma, Y.; Sakoda, K. Self-limiting growth of hexagonal and triangular quantum dots on (111)A. Cryst. Growth Des. 2012, 12, 1411–1415.

    Article  Google Scholar 

  21. Kapon, E.; Pelucchi, E.; Watanabe, S.; Malko, A.; Baier, M. H.; Leifer, K.; Dwir, B.; Michelini, F.; Dupertuis, M. A. Site- and energy-controlled pyramidal quantum dot heterostructures. Phys. E 2004, 25, 288–297.

    Article  Google Scholar 

  22. Pelucchi, E.; Dimastrodonato, V.; Rudra, A.; Leifer, K.; Kapon, E.; Bethke, L.; Zestanakis, P. A.; Vvedensky, D. D. Decomposition, diffusion, and growth rate anisotropies in self-limited profiles during metalorganic vapor-phase epitaxy of seeded nanostructures. Phys. Rev. B 2011, 83, 205409.

    Article  Google Scholar 

  23. Dimastrodonato, V.; Pelucchi, E.; Vvedensky, D. D. Selflimiting evolution of seeded quantum wires and dots on patterned substrates. Phys. Rev. Lett. 2012, 108, 256102.

    Article  Google Scholar 

  24. Zhu, Q.; Karlsson, K. F.; Byszewski, M.; Rudra, A.; Pelucchi, E.; He, Z. B.; Kapon, E. Hybridization of electron and hole states in semiconductor quantum-dot molecules. Small 2009, 5, 329–335.

    Article  Google Scholar 

  25. Hartmann, A.; Loubies, L.; Reinhardt, F.; Kapon, E. Self-limiting growth of quantum dot heterostructures on nonplanar {111}B substrates. Appl. Phys. Lett. 1997, 71, 1314–1316.

    Article  Google Scholar 

  26. Surrente, A.; Gallo, P.; Felici, M.; Dwir, B.; Rudra, A.; Kapon, E. Dense arrays of ordered pyramidal quantum dots with narrow linewidth photoluminescence spectra. Nanotechnology 2009, 20, 415205.

    Article  Google Scholar 

  27. Leifer, K.; Hartmann, A.; Ducommun, Y.; Kapon, E. Carrier transport and luminescence in inverted-pyramid quantum structures. Appl. Phys. Lett. 2000, 77, 3923–3925.

    Article  Google Scholar 

  28. Hartmann, A.; Ducommun, Y.; Kapon, E.; Hohenester, U.; Molinari, E. Few-particle effects in semiconductor quantum dots: Observation of multicharged excitons. Phys. Rev. Lett. 2000, 84, 5648–5651.

    Article  Google Scholar 

  29. Mereni, L. O.; Marquardt, O.; Juska, G.; Dimastrodonato, V.; O’ Reilly, E. P.; Pelucchi, E. Fine-structure splitting in large-pitch pyramidal quantum dots. Phys. Rev. B 2012, 85, 155453.

    Article  Google Scholar 

  30. Karlsson, K. F.; Dupertuis, M. A.; Oberli, D. Y.; Pelucchi, E.; Rudra, A.; Holtz, P. O.; Kapon, E. Fine structure of exciton complexes in high-symmetry quantum dots: Effects of symmetry breaking and symmetry elevation. Phys. Rev. B 2010, 81, 161307(R).

    Article  Google Scholar 

  31. Karlsson, K. F.; Oberli, D. Y.; Dupertuis, M.-A.; Troncale, V.; Byszewski, M.; Pelucchi, E.; Rudra, A.; Holtz, P. O.; Kapon, E. Spectral signatures of high-symmetry quantum dots and effects of symmetry breaking. New J. Phys. 2015, 17, 103017.

    Article  Google Scholar 

  32. Baier, M. H.; Pelucchi, E.; Kapon, E.; Varoutsis, S.; Gallart, M.; Robert-Philip, I.; Abram, I. Single photon emission from site-controlled pyramidal quantum dots. Appl. Phys. Lett. 2004, 84, 648–650.

    Article  Google Scholar 

  33. Calic, M.; Gallo, P.; Felici, M.; Atlasov, K. A.; Dwir, B.; Rudra, A.; Biasiol, G.; Sorba, L.; Tarel, G.; Savona, V. et al. Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities. Phys. Rev. Lett. 2011, 106, 227402.

    Article  Google Scholar 

  34. Surrente, A.; Felici, M.; Gallo, P.; Dwir, B.; Rudra, A.; Biasiol, G.; Sorba, L.; Kapon, E. Ordered systems of sitecontrolled pyramidal quantum dots incorporated in photonic crystal cavities. Nanotechnology 2011, 22, 465203.

    Article  Google Scholar 

  35. Mohan, A.; Gallo, P.; Felici, M.; Dwir, B.; Rudra, A.; Faist, J.; Kapon, E. Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics. Small 2010, 6, 1268–1272.

    Article  Google Scholar 

  36. Felici, M.; Gallo, P.; Mohan, A.; Dwir, B.; Rudra, A.; Kapon, E. Site-controlled InGaAs quantum dots with tunable emission energy. Small 2009, 5, 938–943.

    Article  Google Scholar 

  37. Surrente, A.; Felici, M.; Gallo, P.; Dwir, B.; Rudra, A.; Biasiol, G.; Kapon, E. Polarization properties and disorder effects in H3 photonic crystal cavities incorporating sitecontrolled, high-symmetry quantum dot arrays. Appl. Phys. Lett. 2015, 107, 031106.

    Article  Google Scholar 

  38. Jarlov, C.; Gallo, P.; Calic, M.; Dwir, B.; Rudra, A.; Kapon, E. Bound and anti-bound biexciton in site-controlled pyramidal GaInAs/GaAs quantum dots. Appl. Phys. Lett. 2012, 101, 191101.

    Article  Google Scholar 

  39. Rigal, B.; Jarlov, C.; Gallo, P.; Dwir, B.; Rudra, A.; Calic, M.; Kapon, E. Site-controlled quantum dots coupled to a photonic crystal molecule. Appl. Phys. Lett. 2015, 107, 141103.

    Article  Google Scholar 

  40. Jarlov, C.; Lyasota, A.; Ferrier, L.; Gallo, P.; Dwir, B.; Rudra, A.; Kapon, E. Exciton dynamics in a site-controlled quantum dot coupled to a photonic crystal cavity. Appl. Phys. Lett. 2015, 107, 191101.

    Article  Google Scholar 

  41. Shitara, T.; Vvedensky, D. D.; Wilby, M. R.; Zhang, J.; Neave, J. H.; Joyce, B. A. Misorientation dependence of epitaxial growth on vicinal GaAs(001). Phys. Rev. B 1992, 46, 6825–6833.

    Article  Google Scholar 

  42. Khazanova, S. V.; Vasilevskiy, M. I. Modelling of the composition segregation effect during epitaxial growth of InGaAs quantum well heterostructures. Semicond. Sci. Tech. 2010, 25, 085008.

    Article  Google Scholar 

  43. Kaluza, A.; Schwarz, A.; Gauer, D.; Hardtdegen, H.; Nastase, N.; Lü th, H.; Schä pers, T.; Meertens, D.; Maciel, A.; Ryan, J. et al. On the choice of precursors for the MOVPEgrowth of high-quality Al0.30Ga0.70As/GaAs v-groove quantum wires with large subband spacing. J. Cryst. Growth 2000, 221, 91–97.

    Article  Google Scholar 

  44. Wang, Z.; Seebauer, E. G. Estimating pre-exponential factors for desorption from semiconductors: Consequences for a priori process modeling. Appl. Surf. Sci. 2001, 181, 111–120.

    Article  Google Scholar 

  45. Grandjean, N.; Massies, J.; Leroux, M. Monte Carlo simulation of In surface segregation during the growth of InxGa1-xAs on GaAs(001). Phys. Rev. B 1996, 53, 998–1001.

    Article  Google Scholar 

  46. Meixner, M.; Schöll, E.; Shchukin, V. A.; Bimberg, D. Self-assembled quantum dots: Crossover from kinetically controlled to thermodynamically limited growth. Phys. Rev. Lett. 2001, 87, 236101.

    Article  Google Scholar 

  47. Biasiol, G.; Kapon, E. Mechanisms of self-ordering of quantum nanostructures grown on nonplanar surfaces. Phys. Rev. Lett. 1998, 81, 2962–2965.

    Article  Google Scholar 

  48. Biasiol, G.; Gustafsson, A.; Leifer, K.; Kapon, E. Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures. Phys. Rev. B 2002, 65, 205306.

    Article  Google Scholar 

  49. Dalla Volta, A.; Vvedensky, D. D.; Gogneau, N.; Pelucchi, E.; Rudra, A.; Dwir, B.; Kapon, E.; Ratsch, C. Step ordering induced by nonplanar patterning of GaAs surfaces. Appl. Phys. Lett. 2006, 88, 203104.

    Article  Google Scholar 

  50. Moroni, S. T.; Dimastrodonato, V.; Chung, T.-H.; Juska, G.; Gocalinska, A.; Vvedensky, D. D.; Pelucchi, E. Indium segregation during III–V quantum wire and quantum dot formation on patterned substrates. J. Appl. Phys. 2015, 117, 164313.

    Article  Google Scholar 

  51. Huggenberger, A.; Heckelmann, S.; Schneider, C.; Höfling, S.; Reitzenstein, S.; Worschech, L.; Kamp, M.; Forchel, A. Narrow spectral linewidth from single site-controlled In(Ga)As quantum dots with high uniformity. Appl. Phys. Lett. 2011, 98, 131104.

    Article  Google Scholar 

  52. Schramm, A.; Tommila, J.; Strelow, C.; Hakkarainen, T. V.; Tukiainen, A.; Dumitrescu, M.; Mews, A.; Kipp, T.; Guina, M. Large array of single, site-controlled InAs quantum dots fabricated by UV-nanoimprint lithography and molecular beam epitaxy. Nanotechnology 2012, 23, 175701.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eli Kapon.

Electronic supplementary material

12274_2016_1206_MOESM1_ESM.pdf

Self-formation of hexagonal nanotemplates for growth of pyramidal quantum dots by metalorganic vapor phase epitaxy on patterned substrates

Supplementary material, approximately 4.45 MB.

Supplementary material, approximately 4.78 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surrente, A., Carron, R., Gallo, P. et al. Self-formation of hexagonal nanotemplates for growth of pyramidal quantum dots by metalorganic vapor phase epitaxy on patterned substrates. Nano Res. 9, 3279–3290 (2016). https://doi.org/10.1007/s12274-016-1206-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1206-7

Keywords

Navigation