Skip to main content
Log in

SANTA: Self-aligned nanotrench ablation via Joule heating for probing sub-20 nm devices

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Manipulating materials at the nanometer scale is challenging, particularly if alignment with nanoscale electrodes is desired. Here, we describe a lithography-free, self-aligned nanotrench ablation (SANTA) technique to create nanoscale “trenches” in a polymer like poly(methyl methacrylate) (PMMA). The nanotrenches are self-aligned with carbon nanotube (CNT) or graphene ribbon electrodes through a simple Joule heating process. Using simulations and experiments we investigated how the Joule power, ambient temperature, PMMA thickness, and substrate properties affect the spatial resolution of this technique. We achieved sub-20 nm nanotrenches, for the first time, by lowering the ambient temperature and reducing the PMMA thickness. We also demonstrated a functioning nanoscale resistive memory (RRAM) bit selfaligned with a CNT control device, achieved through the SANTA approach. This technique provides an elegant and inexpensive method to probe nanoscale devices using self-aligned electrodes, without the use of conventional alignment or lithography steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.

    Article  Google Scholar 

  2. Yao, J.; Yan, H.; Lieber, C. M. A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 2013, 8, 329–335.

    Google Scholar 

  3. Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; Wong, H. S. P.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526–530.

    Article  Google Scholar 

  4. Franklin, A. D.; Chen, Z. H. Length scaling of carbon nanotube transistors. Nat. Nanotechnol. 2010, 5, 858–862.

    Article  Google Scholar 

  5. Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.

    Article  Google Scholar 

  6. Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.

    Article  Google Scholar 

  7. Bae, M. H.; Li, Z. Y.; Aksamija, Z.; Martin, P. N.; Xiong, F.; Ong, Z. Y.; Knezevic, I.; Pop, E. Ballistic to diffusive crossover of heat flow in graphene ribbons. Nat. Commun. 2013, 4, 1734–1740.

    Article  Google Scholar 

  8. Behnam, A.; Lyons, A. S.; Bae, M. H.; Chow, E. K.; Islam, S.; Neumann, C. M.; Pop, E. Transport in nanoribbon interconnects obtained from graphene grown by chemical vapor deposition. Nano Lett. 2012, 12, 4424–4430.

    Article  Google Scholar 

  9. Guo, X. F.; Small, J. P.; Klare, J. E.; Wang, Y. L.; Purewal, M. S.; Tam, I. W.; Hong, B. H.; Caldwell, R.; Huang, L. M.; O’Brien, S. et al. Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 2006, 311, 356–359.

    Article  Google Scholar 

  10. Prasongkit, J.; Grigoriev, A.; Pathak, B.; Ahuja, R.; Scheicher, R. H. Transverse conductance of DNA nucleotides in a graphene nanogap from first principles. Nano Lett. 2011, 11, 1941–1945.

    Article  Google Scholar 

  11. Xiong, F.; Liao, A. D.; Estrada, D.; Pop, E. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 2011, 332, 568–570.

    Article  Google Scholar 

  12. Xiong, F.; Bae, M. H.; Dai, Y.; Liao, A. D.; Behnam, A.; Carrion, E. A.; Hong, S.; Ielmini, D.; Pop, E. Self-aligned nanotube-nanowire phase change memory. Nano Lett. 2013, 13, 464–469.

    Article  Google Scholar 

  13. Kim, I. D.; Rothschild, A.; Tuller, H. L. Advances and new directions in gas-sensing devices. Acta Mater. 2013, 61, 974–1000.

    Article  Google Scholar 

  14. Kucsko, G.; Maurer, P. C.; Yao, N. Y.; Kubo, M.; Noh, H. J.; Lo, P. K.; Park, H.; Lukin, M. D. Nanometre-scale thermometry in a living cell. Nature 2013, 500, 54–58.

    Article  Google Scholar 

  15. Yun, J.; Jin, C. Y.; Ahn, J. H.; Jeon, S.; Park, I. A selfheated silicon nanowire array: Selective surface modification with catalytic nanoparticles by nanoscale Joule heating and its gas sensing applications. Nanoscale 2013, 5, 6851–6856.

    Article  Google Scholar 

  16. Jin, S. H.; Dunham, S. N.; Song, J. Z.; Xie, X.; Kim, J. H.; Lu, C. F.; Islam, A.; Du, F.; Kim, J.; Felts, J. et al. Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes. Nat. Nanotechnol. 2013, 8, 347–355.

    Article  Google Scholar 

  17. Zhang, H. J.; Wong, C.-L.; Hao, Y. F.; Wang, R.; Liu, X. G.; Stellacci, F.; Thong, J. T. L. Self-aligned nanolithography by selective polymer dissolution. Nanoscale 2010, 2, 2302–2306.

    Article  Google Scholar 

  18. Jin, C. Y.; Li, Z. Y.; Williams, R. S.; Lee, K. C.; Park, I. Localized temperature and chemical reaction control in nanoscale space by nanowire array. Nano Lett. 2011, 11, 4818–4825.

    Article  Google Scholar 

  19. Chen, C. C.; Lin, Y. S.; Sang, C. H.; Sheu, J. T. Localized joule heating as a mask-free technique for the local synthesis of ZnO nanowires on silicon nanodevices. Nano Lett. 2011, 11, 4736–4741.

    Article  Google Scholar 

  20. Englander, O.; Christensen, D.; Kim, J.; Lin, L. W. Post-processing techniques for locally self-assembled silicon nanowires. Sensor. Actuat. A-Phys. 2007, 135, 10–15.

    Article  Google Scholar 

  21. Liao, A.; Alizadegan, R.; Ong, Z. Y.; Dutta, S.; Xiong, F.; Hsia, K. J.; Pop, E. Thermal dissipation and variability in electrical breakdown of carbon nanotube devices. Phys. Rev. B 2010, 82, 205406.

    Article  Google Scholar 

  22. Xiong, F.; Liao, A.; Pop, E. Inducing chalcogenide phase change with ultra-narrow carbon nanotube heaters. Appl. Phys. Lett. 2009, 95, 243103.

    Article  Google Scholar 

  23. Shi, L.; Zhou, J. H.; Kim, P.; Bachtold, A.; Majumdar, A.; McEuen, P. L. Thermal probing of energy dissipation in current-carrying carbon nanotubes. J. Appl. Phy. 2009, 105, 104306.

    Article  Google Scholar 

  24. Salehi-Khojin, A.; Estrada, D.; Lin, K. Y.; Bae, M.-H.; Xiong, F.; Pop, E.; Masel, R. I. Polycrystalline graphene ribbons as chemiresistors. Adv. Mater. 2012, 24, 53–57.

    Article  Google Scholar 

  25. Li, Z. Y.; Bae, M. H.; Pop, E. Substrate-supported thermometry platform for nanomaterials like graphene, nanotubes, and nanowires. Appl. Phys. Lett. 2014, 105, 023107.

    Article  Google Scholar 

  26. Pop, E. The role of electrical and thermal contact resistance for Joule breakdown of single-wall carbon nanotubes. Nanotechnology 2008, 19, 295202.

    Article  Google Scholar 

  27. Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 2010, 3, 147–169.

    Article  Google Scholar 

  28. Alizadegan, R.; Liao, A. D.; Xiong, F.; Pop, E.; Hsia, K. J. Effects of tip-nanotube interactions on atomic force microscopy imaging of carbon nanotubes. Nano Res. 2012, 5, 235–247.

    Article  Google Scholar 

  29. Lin, Y. C.; Bai, J. W.; Huang, Y. Self-aligned nanolithography in a nanogap. Nano Lett. 2009, 9, 2234–2238.

    Article  Google Scholar 

  30. Hess, C.; Baumann, C.; Ammerahl, U.; Büchner, B.; Heidrich-Meisner, F.; Brenig, W.; Revcolevschi, A. Magnon heat transport in (Sr, Ca, La)14Cu24O41. Phys. Rev. B 2001, 64, 184305.

    Article  Google Scholar 

  31. Islam, S.; Li, Z. Y.; Dorgan, V. E.; Bae, M. H.; Pop, E. Role of Joule heating on current saturation and transient behavior of graphene transistors. IEEE Electr. Device L. 2013, 34, 166–168.

    Article  Google Scholar 

  32. Pop, E.; Mann, D. A.; Goodson, K. E.; Dai, H. J. Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates. J. Appl. Phys. 2007, 101, 093710.

    Article  Google Scholar 

  33. Behnam, A.; Xiong, F.; Cappelli, A.; Wang, N. C.; Carrion, E. A.; Hong, S.; Dai, Y.; Lyons, A. S.; Chow, E. K.; Piccinini, E. et al. Nanoscale phase change memory with graphene ribbon electrodes. Appl. Phys. Lett. 2015, 107, 123508.

    Article  Google Scholar 

  34. English, C. D.; Shine, G.; Dorgan, V. E.; Saraswat, K. C.; Pop, E. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 2016, 16, 3824–3840.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Xiong or Eric Pop.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, F., Deshmukh, S., Hong, S. et al. SANTA: Self-aligned nanotrench ablation via Joule heating for probing sub-20 nm devices. Nano Res. 9, 2950–2959 (2016). https://doi.org/10.1007/s12274-016-1180-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1180-0

Keywords

Navigation