Skip to main content
Log in

An anisotropic propagation technique for synthesizing hyperbranched polyvillic gold nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Of late, many synthesis processes have been studied to develop irregular nano-morphologies of gold nanostructures for biomedical applications in order to increase the efficacy of nanoparticle theranostics, tune the plasmonic absorbance spectra, and increase the sensitivity of biomolecule detection through surface enhanced Raman spectroscopy. Here we report, a novel, non-seed mediated versatile single pot synthesis method capable of producing hyperbranched gold “nano-polyvilli” with more than 50–90 branching nanowires propagating from a single origin within each structure. The technique was capable of achieving precise tuning of the branch propagation where the branching could be controlled by varying the duration of incubation, temperature, and hydrogen ion concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Daniel, M. C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.

    Article  Google Scholar 

  2. Murphy, C. J.; Gole, A. M.; Stone, J. W.; Sisco, P. N.; Alkilany, A. M.; Goldsmith, E. C.; Baxter, S. C. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc. Chem. Res. 2008, 41, 1721–1730.

    Article  Google Scholar 

  3. Ding, Y.; Jiang, Z. W.; Saha, K.; Kim, C. S.; Kim, S. T.; Landis, R. F.; Rotello, V. M. Gold nanoparticles for nucleic acid delivery. Mol. Ther. 2014, 22, 1075–1083.

    Article  Google Scholar 

  4. Rouhana, L. L.; Jaber, J. A.; Schlenoff, J. B. Aggregationresistant water-soluble gold nanoparticles. Langmuir 2007, 23, 12799–12801.

    Article  Google Scholar 

  5. Cormode, D. P.; Roessl, E.; Thran, A.; Skajaa, T.; Gordon, R. E.; Schlomka, J.-P.; Fuster, V.; Fisher, E. A.; Mulder, W. J. M.; Proksa, R. et al. Atherosclerotic plaque composition: Analysis with multicolor CT and targeted gold nanoparticles. Radiology 2010, 256, 774–782.

    Article  Google Scholar 

  6. Schirra, C. O.; Senpan, A.; Roessl, E.; Thran, A.; Stacy, A. J.; Wu, L.; Proska, R.; Pan, D. Second generation gold nanobeacons for robust K-edge imaging with multi-energy CT. J. Mater. Chem. 2012, 22, 23071–23077.

    Article  Google Scholar 

  7. O’Neal, D. P.; Hirsch, L. R.; Halas, N. J.; Payne, J. D.; West, J. L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004, 209, 171–176.

    Article  Google Scholar 

  8. Pan, D.; Pramanik, M.; Senpan, A.; Ghosh, S.; Wickline, S. A.; Wang, L. V.; Lanza, G. M. Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons. Biomaterials 2010, 31, 4088–4093.

    Article  Google Scholar 

  9. Yuan, H.; Khoury, C. G.; Hwang, H.; Wilson, C. M.; Grant, G. A.; Vo-Dinh, T. Gold nanostars: Surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 2012, 23, 075102.

    Article  Google Scholar 

  10. Skrabalak, S. E.; Chen, J. Y.; Sun, Y. G.; Lu, X. M.; Au, L.; Cobley, C. M.; Xia, Y. N. Gold nanocages: Synthesis, properties, and applications. Acc. Chem. Res. 2008, 41, 1587–1595.

    Article  Google Scholar 

  11. Wang, Y. C.; Black, K. C. L.; Luehmann, H.; Li, W. Y.; Zhang, Y.; Cai, X.; Wan, D. H.; Liu, S. Y.; Li, M.; Kim, P. et al. Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano 2013, 7, 2068–2077.

    Article  Google Scholar 

  12. Pan, D.; Pramanik, M.; Senpan, A.; Wickline, S. A.; Wang, L. V.; Lanza, G. M. A facile synthesis of novel self-assembled gold nanorods designed for near-infrared imaging. J. Nanosci. Nanotechnol. 2010, 10, 8118–8123.

    Article  Google Scholar 

  13. Fales, A. M.; Yuan, H.; Vo-Dinh, T. Silica-coated gold nanostars for combined surface-enhanced Raman scattering (SERS) detection and singlet-oxygen generation: A potential nanoplatform for theranostics. Langmuir 2011, 27, 12186–12190.

    Article  Google Scholar 

  14. Gottheim, S.; Zhang, H.; Govorov, A. O.; Halas, N. J. Fractal nanoparticle plasmonics: The cayley tree. 2015, 9, 3284–3292.

    Google Scholar 

  15. Xiao, J. Y.; Qi, L. M. Surfactant-assisted, shape-controlled synthesis of gold nanocrystals. Nanoscale 2011, 3, 1383–1396.

    Article  Google Scholar 

  16. Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248.

    Article  Google Scholar 

  17. Link, S.; El-Sayed, M. A. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 1999, 103, 4212–4217.

    Article  Google Scholar 

  18. Averitt, R. D.; Sarkar, D.; Halas, N. J. Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth. Phys. Rev. Lett. 1997, 78, 4217–4220.

    Article  Google Scholar 

  19. Rotz, M. W.; Culver, K. S. B.; Parigi, G.; MacRenaris, K. W.; Luchinat, C.; Odom, T. W.; Meade, T. J. High relaxivity Gd(III)-DNA gold nanostars: Investigation of shape effects on proton relaxation. ACS Nano 2015, 9, 3385–3396.

    Article  Google Scholar 

  20. Kim, T.-I.; Kim, J.-H.; Son, S. J.; Seo, S.-M. Gold nanocones fabricated by nanotransfer printing and their application for field emission. Nanotechnology 2008, 19, 295302.

    Article  Google Scholar 

  21. Shankar, S. S.; Rai, A.; Ankamwar, B.; Singh, A.; Ahmad, A.; Sastry, M. Biological synthesis of triangular gold nanoprisms. Nat. Mater. 2004, 3, 482–488.

    Article  Google Scholar 

  22. Wang, M.; Thanou, M. Targeting nanoparticles to cancer. Pharmacol. Res. 2010, 62, 90–99.

    Article  Google Scholar 

  23. Benezra, M.; Penate-Medina, O.; Zanzonico, P. B.; Schaer, D.; Ow, H.; Burns, A.; DeStanchina, E.; Longo, V.; Herz, E.; Iyer, S. et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin. Invest. 2011, 121, 2768–2780.

    Article  Google Scholar 

  24. Cho, K.; Wang, X.; Nie, S. M.; Chen, Z. G.; Shin, D. M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 2008, 14, 1310–1316.

    Article  Google Scholar 

  25. Pan, D.; Schmieder, A. H.; Wang, K. Z.; Yang, X. X.; Senpan, A.; Cui, G.; Killgore, K.; Kim, B.; Allen, J. S.; Zhang, H. Y. et al. Anti-angiogenesis therapy in the Vx2 rabbit cancer model with a lipase-cleavable Sn 2 taxane phospholipid prodrug using avß3-targeted theranostic nanoparticles. Theranostics 2014, 4, 565–578.

    Article  Google Scholar 

  26. Faraji, A. H.; Wipf, P. Nanoparticles in cellular drug delivery. Bioorg. Med. Chem. 2009, 17, 2950–2962.

    Article  Google Scholar 

  27. Sk Md, N.; Kim, H. K.; Park, J. A.; Chang, Y. M.; Kim, T. J. Gold nanoparticles coated with Gd-chelate as a potential CT/MRI bimodal contrast agent. Bull. Korean Chem. Soc. 2010, 31, 1177–1181.

    Article  Google Scholar 

  28. Moriggi, L.; Cannizzo, C.; Dumas, E.; Mayer, C. R.; Ulianov, A.; Helm, L. Gold nanoparticles functionalized with gadolinium chelates as high-relaxivity MRI contrast agents. J. Am. Chem. Soc. 2009, 131, 10828–10829.

    Article  Google Scholar 

  29. Alric, C.; Taleb, J.; Le Duc, G.; Mandon, C.; Billotey, C.; Le Meur-Herland, A.; Brochard, T.; Vocanson, F.; Janier, M.; Perriat, P. et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J. Am. Chem. Soc. 2008, 130, 5908–5915.

    Article  Google Scholar 

  30. Jokerst, J. V.; Gambhir, S. S. Molecular imaging with theranostic nanoparticles. Acc. Chem. Res. 2011, 44, 1050–1060.

    Article  Google Scholar 

  31. Pan, D.; Pramanik, M.; Senpan, A.; Allen, J. S.; Zhang, H. Y.; Wickline, S. A.; Wang, L. V.; Lanza, G. M. Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons. FASEB J. 2011, 25, 875–882.

    Article  Google Scholar 

  32. Cao, Y. Y.; He, Y.; Liu, H.; Luo, Y.; Shen, M. W.; Xia, J. D.; Shi, X. Y. Targeted CT imaging of human hepatocellular carcinoma using low-generation dendrimer-entrapped gold nanoparticles modified with lactobionic acid. J. Mater. Chem. B 2015, 3, 286–295.

    Article  Google Scholar 

  33. Popovtzer, R.; Agrawal, A.; Kotov, N. A.; Popovtzer, A.; Balter, J.; Carey, T. E.; Kopelman, R. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett. 2008, 8, 4593–4596.

    Article  Google Scholar 

  34. Champion, J. A.; Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. USA 2006, 103, 4930–4934.

    Article  Google Scholar 

  35. Champion, J. A.; Mitragotri, S. Shape induced inhibition of phagocytosis of polymer particles. Pharm. Res. 2009, 26, 244–249.

    Article  Google Scholar 

  36. Huang, X. L.; Teng, X.; Chen, D.; Tang, F. Q.; He, J. Q. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 2010, 31, 438–448.

    Article  Google Scholar 

  37. Sahay, G.; Alakhova, D. Y.; Kabanov, A. V. Endocytosis of nanomedicines. J. Control. Release 2010, 145, 182–195.

    Article  Google Scholar 

  38. Darbandi, A.; Kavanagh, K. L.; Watkins, S. P. Lithographyfree fabrication of core–shell GaAs nanowire tunnel diodes. Nano Lett. 2015, 15, 5408–5413.

    Article  Google Scholar 

  39. Liu, R. Y.; Zhang, F. T.; Con, C.; Cui, B.; Sun, B. Q. Lithography-free fabrication of silicon nanowire and nanohole arrays by metal-assisted chemical etching. Nanoscale Res. Lett. 2013, 8, 155.

    Article  Google Scholar 

  40. Liu, K.; Zeng, X.; Jiang, S. H.; Ji, D. X.; Song, H. M.; Zhang, N.; Gan, Q. Q. A large-scale lithography-free metasurface with spectrally tunable super absorption. Nanoscale 2014, 6, 5599–5605.

    Article  Google Scholar 

  41. Nalbant Esenturk, E.; Hight Walker, A. R. Surface-enhanced Raman scattering spectroscopy via gold nanostars. J. Raman Spectrosc. 2009, 40, 86–91.

    Article  Google Scholar 

  42. Hrelescu, C.; Sau, T. K.; Rogach, A. L.; Jäckel, F.; Feldmann, J. Single gold nanostars enhance Raman scattering. Appl. Phys. Lett. 2009, 94, 153113.

    Article  Google Scholar 

  43. Yuan, H.; Fales, A. M.; Khoury, C. G.; Liu, J.; Vo-Dinh, T. Spectral characterization and intracellular detection of surfaceenhanced Raman scattering (SERS)-encoded plasmonic gold nanostars. J. Raman Spectrosc. 2013, 44, 234–239.

    Article  Google Scholar 

  44. Lu, G. W.; Li, C.; Shi, G. Q. Synthesis and characterization of 3D dendritic gold nanostructures and their use as substrates for surface-enhanced Raman scattering. Chem. Mater. 2007, 19, 3433–3440.

    Article  Google Scholar 

  45. Léger, C.; Argoul, F.; Bazant, M. Z. Front dynamics during diffusion-limited corrosion of ramified electrodeposits. J. Phys. Chem. B 1999, 103, 5841–5851.

    Article  Google Scholar 

  46. Picioreanu, C.; van Loosdrecht, M. C.; Heijnen, J. J. Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol. Bioeng. 1998, 58, 101–116.

    Article  Google Scholar 

  47. Fujikawa, H.; Matsushita, M. Bacterial fractal growth in the concentration field of nutrient. J. Phys. Soc. Jpn. 1991, 60, 88–94.

    Article  Google Scholar 

  48. Kobayashi, R. Modeling and numerical simulations of dendritic crystal growth. Phys. D Nonlinear Phenom. 1993, 63, 410–423.

    Article  Google Scholar 

  49. Langer, J. S. Instabilities and pattern formation in crystal growth. Rev. Mod. Phys. 1980, 52, 1–28.

    Article  Google Scholar 

  50. Keshavarzi, A.; Wisniewski, W.; Rüssel, C. Dendritic growth of yttrium aluminum garnet from an oxide melt in the system SiO2/Al2O3/Y2O3/CaO. CrystEngComm 2012, 14, 6904–6909.

    Article  Google Scholar 

  51. Hiramatsu, H.; Osterloh, F. E. A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem. Mater. 2004, 16, 2509–2511.

    Article  Google Scholar 

  52. Liu, X.; Atwater, M.; Wang, J. H.; Dai, Q.; Zou, J. H.; Brennan, J. P.; Huo, Q. A study on gold nanoparticle synthesis using oleylamine as both reducing agent and protecting ligand. J. Nanosci. Nanotechnol. 2007, 7, 3126–3133.

    Article  Google Scholar 

  53. Lu, X. M.; Yavuz, M. S.; Tuan, H.-Y.; Korgel, B. A.; Xia, Y. N. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction. J. Am. Chem. Soc. 2008, 130, 8900–8901.

    Article  Google Scholar 

  54. Yue, Y.; Kan, Y. W.; Choi, H.; Clearfield, A.; Liang, H. Correlating hydrodynamic radii with that of two-dimensional nanoparticles. Appl. Phys. Lett. 2015, 107, 253103.

    Article  Google Scholar 

  55. Khlebtsov, B. N.; Khlebtsov, N. G. On the measurement of gold nanoparticle sizes by the dynamic light scattering method. Colloid J. 2011, 73, 118–127.

    Article  Google Scholar 

  56. Rodríguez-Fernández, J.; Pérez-Juste, J.; Liz-Marzán, L. M.; Lang, P. R. Dynamic light scattering of short au rods with low aspect ratios. J. Phys. Chem. C 2007, 111, 5020–5025.

    Article  Google Scholar 

  57. Limbach, L. K.; Wick, P.; Manser, P.; Grass, R. N.; Bruinink, A.; Stark, W. J. Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stress. Environ. Sci. Technol. 2007, 41, 4158–4163.

    Article  Google Scholar 

  58. Pelaz, B.; del Pino, P.; Maffre, P.; Hartmann, R.; Gallego, M.; Rivera-Fernández, S.; de la Fuente, J. M.; Nienhaus, G. U.; Parak, W. J. Surface functionalization of nanoparticles with polyethylene glycol: Effects on protein adsorption and cellular uptake. ACS Nano 2015, 9, 6996–7008.

    Article  Google Scholar 

  59. Schrade, A.; Mailänder, V.; Ritz, S.; Landfester, K.; Ziener, U. Surface roughness and charge influence the uptake of nanoparticles: Fluorescently labeled pickering-type versus surfactant-stabilized nanoparticles. Macromol. Biosci. 2012, 12, 1459–1471.

    Article  Google Scholar 

  60. Akilbekova, D.; Philiph, R.; Graham, A.; Bratlie, K. M. Macrophage reprogramming: Influence of latex beads with various functional groups on macrophage phenotype and phagocytic uptake in vitro. J. Biomed. Mater. Res. A 2015, 103, 262–268.

    Article  Google Scholar 

  61. Razani, B.; Woodman, S. E.; Lisanti, M. P. Caveolae: From cell biology to animal physiology. Pharmacol. Rev. 2002, 54, 431–467.

    Article  Google Scholar 

  62. Arias, J. L.; Fernández, M. Polysaccharides and proteoglycans in calcium carbonate-based biomineralization. Chem. Rev. 2008, 108, 4475–4482.

    Article  Google Scholar 

  63. Xie, J. P.; Zheng, Y. G.; Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipanjan Pan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwartz-Duval, A.S., Misra, S.K., Mukherjee, P. et al. An anisotropic propagation technique for synthesizing hyperbranched polyvillic gold nanoparticles. Nano Res. 9, 2889–2903 (2016). https://doi.org/10.1007/s12274-016-1174-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1174-y

Keywords

Navigation