Skip to main content
Log in

In situ observation of sublimation-enhanced magnesium oxidation at elevated temperature

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Oxidation plays a tremendous role in the long-term performance of metals. As an important lightweight metal for industrial applications, magnesium suffers from its high reactivity with oxygen and increased evaporation at high temperatures. To understand the oxidation mechanism of magnesium at elevated temperatures, in situ environmental transmission electron microscopy (E-TEM) was performed on magnesium nanoparticles. At a relatively low temperature, the growth of a MgO lamellae via the outward diffusion of bulk magnesium atoms dominated the oxidation process. In contrast, a sublimation-enhanced oxidation via gas phase reaction occurred at 200 °C, leading to the growth of MgO dendrites over the particle that finally leads to the degradation of the magnesium structure. This study provides a direct observation and model of the oxidation mechanism of a direct gas–gas reaction that improves our understanding of the oxidation mechanism at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Czerwinski, F. Oxidation characteristics of magnesium alloys. JOM 2012, 64, 1477–1483.

    Article  Google Scholar 

  2. Zhou, G. W.; Luo, L. L.; Li, L.; Ciston, J.; Stach, E. A.; Yang, J. C. Step-edge-induced oxide growth during the oxidation of Cu surfaces. Phys. Rev. Lett. 2012, 109, 235502.

    Article  Google Scholar 

  3. Czerwinski, F. The oxidation behaviour of an AZ91D magnesium alloy at high temperatures. Acta Mater. 2002, 50, 2639–2654.

    Article  Google Scholar 

  4. Fournier, V.; Marcus, P.; Olefjord, I. Oxidation of magnesium. Surf. Interface Anal. 2002, 34, 494–497.

    Article  Google Scholar 

  5. Czerwinski, F. The early stage oxidation and evaporation of Mg–9%Al–1%Zn alloy. Corros. Sci. 2004, 46, 377–386.

    Article  Google Scholar 

  6. Zheng, H.; Wu, S. J.; Sheng, H. P.; Liu, C.; Liu, Y.; Cao, F.; Zhou, Z. C.; Zhao, X. Z.; Zhao, D. S.; Wang, J. B. Direct atomic-scale observation of layer-by-layer oxide growth during magnesium oxidation. Appl. Phys. Lett. 2014, 104, 141906.

    Article  Google Scholar 

  7. Ogawa, S.; Murakami, S.; Shirai, K.; Nakanishi, K.; Ohta, T.; Yagi, S. Nexafs study of air oxidation for Mg nanoparticle thin film. J. Phys.: Conf. Ser. 2013, 417, 012065.

    Google Scholar 

  8. Lanthony, C.; Ducéré, J. M.; Rouhani, M. D.; Hemeryck, A.; Estève, A.; Rossi, C. On the early stage of aluminum oxidation: An extraction mechanism via oxygen cooperation. J. Chem. Phys. 2012, 137, 094707.

    Article  Google Scholar 

  9. Hasani, S.; Panjepour, M.; Shamanian, M. The oxidation mechanism of pure aluminum powder particles. Oxid. Met. 2012, 78, 179–195.

    Article  Google Scholar 

  10. Bertrand, N.; Desgranges, C.; Poquillon, D.; Lafont, M.-C.; Monceau, D. Iron oxidation at low temperature (260–500 °C) in air and the effect of water vapor. Oxid. Met. 2010, 73, 139–162.

    Article  Google Scholar 

  11. Shih, T.-S.; Liu, Z.-B. Thermally-formed oxide on aluminum and magnesium. Mater. Trans. 2006, 47, 1347–1353.

    Article  Google Scholar 

  12. Rai, A.; Park, K.; Zhou, L.; Zachariah, M. R. Understanding the mechanism of aluminium nanoparticle oxidation. Comb. Theory Model. 2006, 10, 843–859.

    Article  Google Scholar 

  13. Kurth, M.; Graat, P. C. J.; Carstanjen, H. D.; Mittemeijer, E. J. The initial oxidation of magnesium: An in situ study with XPS, HERDA and ellipsometry. Surf. Interface Anal. 2006, 38, 931–940.

    Article  Google Scholar 

  14. Schröder, E.; Fasel, R.; Kiejna, A. Mg(0001) surface oxidation: A two-dimensional oxide phase. Phys. Rev. B 2004, 69, 193405.

    Article  Google Scholar 

  15. Glass, S.; Nienhaus, H. Continuous monitoring of Mg oxidation by internal exoemission. Phys. Rev. Lett. 2004, 93, 168302.

    Article  Google Scholar 

  16. Bungaro, C.; Noguera, C.; Ballone, P.; Kress, W. Early oxidation stages of Mg(0001): A density functional study. Phys. Rev. Lett. 1997, 79, 4433–4436.

    Article  Google Scholar 

  17. Thiry, P. A.; Ghijsen, J.; Sporken, R.; Pireaux, J. J.; Johnson, R. L.; Caudano, R. Incipient oxidation of magnesium: A high-resolution electron-energy-loss and photoemission study. Phys. Rev. B 1989, 39, 3620–3631.

    Article  Google Scholar 

  18. Hayden, B. E.; Schweizer, E.; Kötz, R.; Bradshaw, A. M. The early stages of oxidation of magnesium single crystal surfaces. Surf. Sci. 1981, 111, 26–38.

    Article  Google Scholar 

  19. Scamans, G. M.; Butler, E. P. In situ observations of crystalline oxide formation during aluminum and aluminum alloy oxidation. Metall. Trans. A 1975, 6, 2055–2063.

    Article  Google Scholar 

  20. Fehlner, F. P.; Mott, N. F. Low-temperature oxidation. Oxid. Met. 1970, 2, 59–99.

    Article  Google Scholar 

  21. Cabrera, N.; Mott, N. F. Theory of the oxidation of metals. Rep. Prog. Phys. 1949, 12, 163–184.

    Article  Google Scholar 

  22. Wang, Y.; Fan, Z.; Zhou, X.; Thompson, G. Characterisation of magnesium oxide and its interface with a-Mg in Mg–Albased alloys. Philos. Mag. Lett. 2011, 91, 516–529.

    Article  Google Scholar 

  23. Kooi, B. J.; Palasantzas, G.; De Hosson, J. T. M. Gas-phase synthesis of magnesium nanoparticles: A high-resolution transmission electron microscopy study. Appl. Phys. Lett. 2006, 89, 161914.

    Article  Google Scholar 

  24. Chen, J. H.; Lu, G. H.; Zhu, L. Y.; Flagan, R. C. A simple and versatile mini-arc plasma source for nanocrystal synthesis. J. Nanopart. Res. 2007, 9, 203–213.

    Article  Google Scholar 

  25. Yu, Q.; Mao, M. M.; Li, Q. J.; Fu, X. Q.; Tian, H.; Li, J. X.; Mao, S. X.; Zhang, Z. In situ observation on dislocationcontrolled sublimation of Mg nanoparticles. Nano Lett. 2016, 16, 1156–1160.

    Article  Google Scholar 

  26. Kooi, B. J.; De Hosson, J. T. M. Influence of misfit and interfacial binding energy on the shape of the oxide precipitates in metals: Interfaces between Mn3O4 precipitates and Pd studied with HRTEM. Acta Mater. 2000, 48, 3687–3699.

    Article  Google Scholar 

  27. Noguera, C. Polar oxide surfaces. J. Phys.: Condens. Matter 2000, 12, R367.

  28. Noguera, C.; Pojani, A.; Casek, P.; Finocchi, F. Electron redistribution in low-dimensional oxide structures. Surf. Sci. 2002, 507-510, 245–255.

    Article  Google Scholar 

  29. Lea, C.; Molinari, C. Magnesium diffusion, surface segregation and oxidation in Al-Mg alloys. J. Mater. Sci. 1984, 19, 2336–2352.

    Article  Google Scholar 

  30. Smeltzer, W. W. Oxidation of an aluminum-3 per cent magnesium alloy in the temperature range 200–550°C. J. Electrochem. Soc. 1958, 105, 67–71.

    Article  Google Scholar 

  31. Egerton, R. F.; Li, P.; Malac, M. Radiation damage in the TEM and SEM. Micron 2004, 35, 399–409.

    Article  Google Scholar 

  32. Sundararajan, J. A.; Kaur, M.; Qiang, Y. Mechanism of electron beam induced oxide layer thickening on iron–iron oxide core–shell nanoparticles. J. Phys. Chem. C 2015, 119, 8357–8363.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Yu or Scott X. Mao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Fu, X., Mao, M. et al. In situ observation of sublimation-enhanced magnesium oxidation at elevated temperature. Nano Res. 9, 2796–2802 (2016). https://doi.org/10.1007/s12274-016-1168-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1168-9

Keywords

Navigation