Skip to main content
Log in

Sandwich-type ordered mesoporous carbon/graphene nanocomposites derived from ionic liquid

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Sandwich-type ordered mesoporous carbon/graphene nanocomposites were successfully synthesized using 2D ordered mesoporous silica/graphene nanocomposites as the hard template and an ionic liquid as a N-rich carbon source. We used an ionic liquid of 1-(3-cyanopropyl)-3-methylimidazolium dicyanamide containing nitrile groups (–CN) in the cation and anion as a carbon precursor for the preparation of the nanocomposites. Nitriles do not decompose under thermal treatment in an inert gas atmosphere, but leave significant amounts of N-rich carbon materials. The nanocomposites had a large surface area (1,316 m2·g–1), an average pore diameter of 5.9 nm, and high electrical conductivity. The nanocomposite electrode showed a high specific capacitance of 190 F·g–1 at 0.5 A·g–1 in 1 M TEABF4/AN electrolyte and a good rate capability between 0 and 2.7 V for supercapacitor (or ultracapacitor) applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, R. L.; Wu, D. Q.; Feng, X. L.; Müllen, K. Nitrogendoped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem. 2010, 122, 2619–2623.

    Article  Google Scholar 

  2. Rasines, G.; Lavela, P.; Macías, C.; Zafra, M. C.; Tirado, J. L.; Parra, J. B.; Ania, C. O. N-doped monolithic carbon aerogel electrodes with optimized features for the electrosorption of ions. Carbon 2015, 83, 262–274.

    Article  Google Scholar 

  3. Watanabe, H.; Asano, S.; Fujita, S. I.; Yoshida, H.; Arai, M. Nitrogen-doped, metal-free activated carbon catalysts for aerobic oxidation of alcohols. ACS Catal. 2015, 5, 2886–2894.

    Article  Google Scholar 

  4. Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.

    Article  Google Scholar 

  5. Sreenivasulu, B.; Sreedhar, I.; Suresh, P.; Raghavan, K. V. Development trends in porous adsorbents for carbon capture. Environ. Sci. Technol. 2015, 49, 12641–12661.

    Article  Google Scholar 

  6. Nishihara, H.; Kyotani, T. Templated nanocarbons for energy storage. Adv. Mater. 2012, 24, 4473–4498.

    Article  Google Scholar 

  7. Lee, C. W.; Yoon, S. B.; Kim, H. K.; Youn, H. C.; Han, J.; Roh, K. C.; Kim, K. B. A two-dimensional highly ordered mesoporous carbon/graphene nanocomposite for electrochemical double layer capacitors: Effects of electrical and ionic conduction pathways. J. Mater. Chem. A 2015, 3, 2314–2322.

    Article  Google Scholar 

  8. Lee, J. S.; Joo, S. H.; Ryoo, R. Synthesis of mesoporous silicas of controlled pore wall thickness and their replication to ordered nanoporous carbons with various pore diameters. J. Am. Chem. Soc. 2002, 124, 1156–1157.

    Article  Google Scholar 

  9. Zhang, L. L.; Zhao, X.; Ji, H. X.; Stoller, M. D.; Lai, L. F.; Murali, S.; Mcdonnell, S.; Cleveger, B.; Wallace, R. M.; Ruoff, R. S. Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon. Energy Environ. Sci. 2012, 5, 9618–9625.

    Article  Google Scholar 

  10. Fechler, N.; Fellinger, T. P.; Anthonietti, M. One-pot synthesis of nitrogen–sulfur-co-doped carbons with tunable composition using a simple isothiocyanate ionic liquid. J. Mater. Chem. 2013, 1, 14097–14102.

    Article  Google Scholar 

  11. Qiu, B.; Pan, C. T.; Qian, W. J.; Peng, Y. J.; Qiu, L. H.; Yan, F. Nitrogen-doped mesoporous carbons originated from ionic liquids as electrode materials for supercapacitors. J. Mater. Chem. A 2013, 1, 6373–6378.

    Article  Google Scholar 

  12. Fellinger, T. P.; Hasché, F.; Strasser, P.; Anthonietti, M. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2012, 134, 4072–4075.

    Article  Google Scholar 

  13. Han, C. L.; Wang, J.; Gong, Y. T.; Xu, X.; Li, H. R.; Wang, Y. Nitrogen-doped hollow carbon hemispheres as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline medium. J. Mater. Chem. 2014, 2, 605–609.

    Article  Google Scholar 

  14. Li, Z. L.; Li, G. L.; Jiang, L. H.; Li, J. L.; Sun, G. Q.; Xia, C. G.; Li, F. W. Ionic liquids as precursors for efficient mesoporous iron-nitrogen-doped oxygen reduction electrocatalysts. Angew. Chem., Int. Ed. 2015, 54, 1494–1498.

    Article  Google Scholar 

  15. Paraknowitsch, J. P.; Zhang, J.; Su, D. S.; Thomas, A.; Anthonietti, M. Ionic liquids as precursors for nitrogendoped graphitic carbon. Adv. Mater. 2010, 22, 87–92.

    Article  Google Scholar 

  16. Yang, W.; Fellinger, T. P.; Anthonietti, M. Efficient metalfree oxygen reduction in alkaline medium on high-surfacearea mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. J. Am. Chem. Soc. 2011, 133, 206–209.

    Article  Google Scholar 

  17. Peng, Y. J.; Wu, X.; Qiu, L. H.; Liu, C. H.; Wang, S. D.; Yan, F. Synthesis of carbon–PtAu nanoparticle hybrids originating from triethoxysilane—Derivatized ionic liquids for methanol electrooxidation and the catalytic reduction of 4-nitrophenol. J. Mater Chem. A 2013, 1, 9257–9263.

    Article  Google Scholar 

  18. Pan, C. T.; Qiu, L. H.; Peng, Y. J.; Yan F. Facile synthesis of nitrogen-doped carbon–Pt nanoparticle hybrids via carbonization of poly([Bvim][Br]-co-acrylonitrile) for electrocatalytic oxidation of methanol. J. Mater Chem. 2012, 22, 13578–13584.

    Article  Google Scholar 

  19. Lee, J. S.; Luo, H. M.; Baker, G. A.; Dai, S. Cation cross-linked ionic liquids as anion-exchange materials. Chem. Mater. 2009, 21, 4756–4758.

    Article  Google Scholar 

  20. Lee, J. S.; Wang, X. Q.; Luo, H. M.; Baker, G. A.; Dai, S. Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids. J. Am. Chem. Soc. 2009, 131, 4596–4597.

    Article  Google Scholar 

  21. Lee, J. S.; Wang, X. Q.; Luo, H. M.; Dai, S. Fluidic carbon precursors for formation of functional carbon under ambient pressure based on ionic liquids. Adv. Mater. 2010, 22, 1004–1007.

    Article  Google Scholar 

  22. Fellinger, T. P.; Su, D. S.; Engenhorst, M.; Gautam, D.; Schlögl, R.; Anthonietti, M. Thermolytic synthesis of graphitic boron carbon nitride from an ionic liquid precursor: Mechanism, structure analysis and electronic properties. J. Mater. Chem. 2012, 22, 23996–24005.

    Article  Google Scholar 

  23. Kuhn, P.; Forget, A.; Su, D. S.; Thomas, A.; Anthonietti, M. From microporous regular frameworks to mesoporous materials with ultrahigh surface area: Dynamic reorganization of porous polymer networks. J. Am. Chem. Soc. 2008, 130, 13333–13337.

    Article  Google Scholar 

  24. Lee, C. W.; Roh, K. C.; Kim, K. B. A highly ordered cubic mesoporous silica/graphene nanocomposite. Nanoscale 2013, 5, 9604–9608.

    Article  Google Scholar 

  25. Ohtani, H.; Ishimura, S.; Kumai, M. Thermal decomposition behaviors of imidazolium-type ionic liquids studied by pyrolysis-gas chromatography. Anal. Sci. 2008, 24, 1335–1340.

    Article  Google Scholar 

  26. Park, S. H.; Bak, S. M.; Kim, H. K.; Jegal, J. P.; Lee, S. I.; Lee, J.; Kim, K. B. Solid-state microwave irradiation synthesis of high quality graphene nanosheets under hydrogen containing atmosphere. J. Mater. Chem. A 2011, 21, 680–686.

    Article  Google Scholar 

  27. Weidenthaler, C. Pitfalls in the characterization of nanoporous and nanosized materials. Nanoscale 2011, 3, 792–810.

    Article  Google Scholar 

  28. Zhao, X. C.; Wang, A. Q.; Yan, J. W.; Sun, G. Q.; Sun, L. X.; Zhang, T. Synthesis and electrochemical performance of heteroatom-incorporated ordered mesoporous carbons. Chem. Mater. 2010, 22, 5463–5473.

    Article  Google Scholar 

  29. Woo, S. W.; Dokko, K.; Nakano, H.; Kanamura, K. Preparation of three dimensionally ordered macroporous carbon with mesoporous walls for electric double-layer capacitors. J. Mater. Chem. 2008, 18, 1674–1680.

    Article  Google Scholar 

  30. Kleitz, F.; Choi, S. H.; Ryoo, R. Cubic Ia3d large mesoporous silica: Synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun. 2003, 2136–2137.

    Google Scholar 

  31. Wei, J.; Zhou, D. D.; Sun, Z. K.; Deng, Y. H.; Xia, Y. Y.; Zhao, D. Y. A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv. Funct. Mater. 2013, 23, 2322–2328.

    Article  Google Scholar 

  32. Paraknowitsch, J. P.; Thomas, A.; Antonietti, M. A detailed view on the polycondensation of ionic liquid monomers towards nitrogen doped carbon materials. J. Mater. Chem. 2010, 20, 6746–6758.

    Article  Google Scholar 

  33. Guo, D. C.; Mi, J.; Hao, G. P.; Dong, W.; Xiong, G.; Li, W. C.; Lu, A. H. Ionic liquid C16mimBF4 assisted synthesis of poly(benzoxazine-co-resol)-based hierarchically porous carbons with superior performance in supercapacitors. Energy Environ. Sci. 2013, 6, 652–659.

    Article  Google Scholar 

  34. Zheng, C.; Zhou, X. F.; Cao, H. L.; Wang, G. H.; Liu, Z. P. Controllable synthesis of activated graphene and its application in supercapacitors. J. Mater. Chem. A 2015, 3, 9543–9549.

    Article  Google Scholar 

  35. Cai, T. H.; Xing, W.; Liu, Z.; Zeng, J. B.; Xue, Q. Z.; Qiao, S. Z.; Yan, Z. F. Superhigh-rate capacitive performance of heteroatoms-doped double shell hollow carbon spheres. Carbon 2015, 86, 235–244.

    Article  Google Scholar 

  36. Kim, M. H.; Yun, S.; Park, H. S.; Han, J. T.; Kim, K. B.; Roh, K. C. Retransformed graphitic activated carbon from ionic liquid-derived carbon containing nitrogen. J. Mater. Chem. A 2015, 3, 2564–2567.

    Article  Google Scholar 

  37. Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.

    Article  Google Scholar 

  38. Fechler, N.; Fellinger, T. P.; Antonietti, M. “Salt templating”: A simple and sustainable pathway toward highly porous functional carbons from ionic liquids. Adv. Mater. 2013, 25, 75–79.

    Article  Google Scholar 

  39. Yang, S. B.; Feng, X. L.; Wang, X. C.; Müllen, K. Graphenebased carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions. Angew. Chem., Int. Ed. 2011, 50, 5339–5343.

    Article  Google Scholar 

  40. Jeong, H. M.; Lee, J. W.; Shin, W. H.; Choi, Y. J.; Shin, H. J.; Kang, J. K.; Choi, J. W. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 2011, 11, 2472–2477.

    Article  Google Scholar 

  41. Park, S. H.; Yoon, S. B.; Kim, H. K.; Han, J. T.; Park, H. W.; Han, J.; Yun, S. M.; Jeong, H. G.; Roh, K. C.; Kim, K. B. Spine-like nanostructured carbon interconnected by graphene for high-performance supercapacitors. Sci. Rep. 2014, 4, 6118.

    Article  Google Scholar 

  42. Jin, Z. Y.; Lu, A. H.; Xu, Y. Y.; Zhang, J. T.; Li, W. C. Ionic liquid-assisted synthesis of microporous carbon nanosheets for use in high rate and long cycle life supercapacitors. Adv. Mater. 2014, 26, 3700–3705.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kwang Chul Roh or Kwang-Bum Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.S., Kim, Y.H., Roh, K.C. et al. Sandwich-type ordered mesoporous carbon/graphene nanocomposites derived from ionic liquid. Nano Res. 9, 2696–2706 (2016). https://doi.org/10.1007/s12274-016-1158-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1158-y

Keywords

Navigation