Skip to main content
Log in

Au/CuSiO3 nanotubes: High-performance robust catalysts for selective oxidation of ethanol to acetaldehyde

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Novel gold-supporting silicate nanotubes are synthesized via a hydrothermal method followed by colloid deposition. Their catalytic performance for the selective oxidation of ethanol to acetaldehyde is assessed. The results show that Au/CuSiO3 nanotubes exhibit both high activity and selectivity at high gas hourly space velocity (GHSV). Ethanol conversion can reach up to ~98%, and the selectivity for acetaldehyde is ~93% at 250 °C and ~100,000 mL·gcat–1·h–1. In comparison, the catalytic activity of Au/MgSiO3 nanotubes is relatively low, and ethanol conversion reaches only ~25% at 250 °C. However, when Cu species are added to Au/MgSiO3, the catalytic activity improves significantly, indicating that the interactions between Au nanoparticles and Cu species are responsible for the high performance for selective oxidation of ethanol to acetaldehyde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bauer, J. C.; Veith, G. M.; Allard, L. F.; Oyola, Y.; Overbury, S. H.; Dai, S. Silica-supported Au–CuOx hybrid nanocrystals as active and selective catalysts for the formation of acetaldehyde from the oxidation of ethanol. ACS Catal. 2012, 2, 2537–2546.

    Article  Google Scholar 

  2. Guan, Y. J.; Hensen, E. J. M. Selective oxidation of ethanol to acetaldehyde by Au-Ir catalysts. J. Catal. 2013, 305, 135–145.

    Article  Google Scholar 

  3. Hashmi, A. S. K.; Hutchings, G. J. Gold catalysis. Angew. Chem., Int. Ed. 2006, 45, 7896–7936.

    Article  Google Scholar 

  4. Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem. Lett. 1987, 16, 405–408.

    Article  Google Scholar 

  5. Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301–309.

    Article  Google Scholar 

  6. Zhu, Z. N.; Meng, H. F.; Liu, W. J.; Liu, X. F.; Gong, J. X.; Qiu, X. H.; Jiang, L.; Wang, D.; Tang, Z. Y. Superstructures and SERS properties of gold nanocrystals with different shapes. Angew. Chem., Int. Ed. 2011, 50, 1593–1596.

    Article  Google Scholar 

  7. Gong, J. L. Structure and surface chemistry of gold-based model catalysts. Chem. Rev. 2012, 112, 2987–3054.

    Article  Google Scholar 

  8. Sheldon, R. A.; Arends, I. W. C. E.; ten Brink, G.-J.; Dijksman, A. Green, catalytic oxidations of alcohols. Acc. Chem. Res. 2002, 35, 774–781.

    Article  Google Scholar 

  9. Christensen, C. H.; Jørgensen, B.; Rass-Hansen, J.; Egeblad, K.; Madsen, R.; Klitgaard, S. K.; Hansen, S. M.; Hansen, M. R.; Andersen, H. C.; Riisager, A. Formation of acetic acid by aqueous-phase oxidation of ethanol with air in the presence of a heterogeneous gold catalyst. Angew. Chem., Int. Ed. 2006, 45, 4648–4651.

    Article  Google Scholar 

  10. Gong, J. L.; Mullins, C. B. Selective oxidation of ethanol to acetaldehyde on gold. J. Am. Chem. Soc. 2008, 130, 16458–16459.

    Article  Google Scholar 

  11. Li, G. D.; Tang, Z. Y. Noble metal nanoparticle@metal oxide core/yolk–shell nanostructures as catalysts: Recent progress and perspective. Nanoscale 2014, 6, 3995–4017.

    Article  Google Scholar 

  12. Qi, J.; Chen, J.; Li, G. D.; Li, S. X.; Gao, Y.; Tang, Z. Y. Facile synthesis of core–shell Au@CeO2 nanocomposites with remarkably enhanced catalytic activity for COoxidation. Energy Environ. Sci. 2012, 5, 8937–8941.

    Article  Google Scholar 

  13. Chen, J.; Wang, D. W.; Qi, J.; Li, G. D.; Zheng, F. Y.; Li, S. X.; Zhao, H. J.; Tang, Z. Y. Monodisperse hollow spheres with sandwich heterostructured shells as high-performance catalysts via an extended SiO2 template method. Small 2015, 11, 420–425.

    Article  Google Scholar 

  14. Zheng, N. F.; Stucky, G. D. A general synthetic strategy for oxide-supported metal nanoparticle catalysts. J. Am. Chem. Soc. 2006, 128, 14278–14280.

    Article  Google Scholar 

  15. Mielby, J.; Abildstrøm, J. O.; Wang, F.; Kasama, T.; Weidenthaler, C.; Kegnæs, S. Oxidation of bioethanol using zeolite-encapsulated gold nanoparticles. Angew. Chem. 2014, 126, 12721–12724.

    Article  Google Scholar 

  16. Simakova, O. A.; Sobolev, V. I.; Koltunov, K. Y.; Campo, B.; Leino, A.-R.; Kordás, K.; Murzin, D. Y. “Double-peak” catalytic activity of nanosized gold supported on titania in gas-phase selective oxidation of ethanol. ChemCatChem 2010, 2, 1535–1538.

    Article  Google Scholar 

  17. Wang, X.; Zhuang, J.; Chen, J.; Zhou, K. B.; Li, Y. D. Thermally stable silicate nanotubes. Angew. Chem., Int. Ed. 2004, 43, 2017–2020.

    Article  Google Scholar 

  18. Yue, H. R.; Zhao, Y. J.; Zhao, S.; Wang, B.; Ma, X. B.; Gong, J. L. A copper–phyllosilicate core–sheath nanoreactor for carbon–oxygen hydrogenolysis reactions. Nat. Commun. 2013, 4, 2339.

    Article  Google Scholar 

  19. Yue, H. R.; Ma, X. B.; Gong, J. L. An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol. Acc. Chem. Res. 2014, 47, 1483–1492.

    Article  Google Scholar 

  20. Yang, J. P.; Shen, D. K.; Wei, Y.; Li, W.; Zhang, F.; Kong, B.; Zhang, S. H.; Teng, W.; Fan, J. W.; Zhang, W. X. et al. Monodisperse core–shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels. Nano Res. 2015, 8, 2503–2514.

    Article  Google Scholar 

  21. van den Berg, R.; Elkjaer, C. F.; Gommes, C. J.; Chorkendorff, I.; Sehested, J.; de Jongh, P. E.; de Jong, K. P.; Helveg, S. Revealing the formation of copper nanoparticles from a homogeneous solid precursor by electron microscopy. J. Am. Chem. Soc. 2016, 138, 3433–3442.

    Article  Google Scholar 

  22. Gong, J. L.; Yue, H. R.; Zhao, Y. J.; Zhao, S.; Zhao, L.; Lv, J.; Wang, S. P.; Ma, X. B. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0–Cu+ sites. J. Am. Chem. Soc. 2012, 134, 13922–13925.

    Article  Google Scholar 

  23. Comotti, M.; Li, W.-C.; Spliethoff, B.; Schüth, F. Support effect in high activity gold catalysts for COoxidation. J. Am. Chem. Soc. 2006, 128, 917–924.

    Article  Google Scholar 

  24. Wang, Z. Q.; Xu, Z. N.; Peng, S. Y.; Zhang, M. J.; Lu, G.; Chen, Q. S.; Chen, Y. M.; Guo, G. C. High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation. ACS Catal. 2015, 5, 4255–4259.

    Article  Google Scholar 

  25. Du, X. J.; Zhang, D. S.; Gao, R. H.; Huang, L.; Shi, L. Y.; Zhang, J. P. Design of modular catalysts derived from NiMgAl-LDH@m-SiO2 with dual confinement effects for dry reforming of methane. Chem. Commun. 2013, 49, 6770–6772.

    Article  Google Scholar 

  26. Liu, Y. L.; Tang, Z. Y. Multifunctional nanoparticle@MOF core–shell nanostructures. Adv. Mater. 2013, 25, 5819–5825.

    Article  Google Scholar 

  27. Zhao, Y. X.; Zhang, Y.; Zhao, H.; Li, X. J.; Li, Y. P.; Wen, L.; Yan, Z. F.; Huo, Z. Y. Epitaxial growth of hyperbranched Cu/Cu2O/CuO core–shell nanowire heterostructures for lithium-ion batteries. Nano Res. 2015, 8, 2763–2776.

    Article  Google Scholar 

  28. Liu, P.; Hensen, E. J. M. Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. J. Am. Chem. Soc. 2013, 135, 14032–14035.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, X., Fu, N., Zhang, S. et al. Au/CuSiO3 nanotubes: High-performance robust catalysts for selective oxidation of ethanol to acetaldehyde. Nano Res. 9, 2681–2686 (2016). https://doi.org/10.1007/s12274-016-1155-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1155-1

Keywords

Navigation