Skip to main content
Log in

Nitrogen-doped graphene microtubes with opened inner voids: Highly efficient metal-free electrocatalysts for alkaline hydrogen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A facile method was developed to fabricate nitrogen-doped graphene microtubes (N-GMT) with ultra-thin walls of 1–4 nm and large inner voids of 1–2 μm. The successful introduction of nitrogen dopants afforded N-GMT more active sites for significantly enhanced hydrogen evolution reaction (HER) activity, achieving a current density of 10 mA·cm–2 at overpotentials of 0.464 and 0.426 V vs. RHE in 0.1 and 6 M KOH solution, respectively. This HER performance surpassed that of the best metal-free catalyst reported in basic solution, further illustrating the great potential of N-GMT as an efficient HER catalyst for real applications in water splitting and chlor-alkali processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

    Article  Google Scholar 

  2. Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

    Article  Google Scholar 

  3. Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

    Google Scholar 

  4. Vrubel, H.; Hu, X. L. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem., Int. Ed. 2012, 51, 12703–12706.

    Article  Google Scholar 

  5. Chang, K.; Mei, Z. W.; Wang, T.; Kang, Q.; Ouyang, S. X.; Ye, J. H. MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 2014, 8, 7078–7087.

    Article  Google Scholar 

  6. Fellinger, T.-P.; Su, D. S.; Engenhorst, M.; Gautam, D.; Schlögl, R.; Antonietti, M. Thermolytic synthesis of graphitic boron carbon nitride from an ionic liquid precursor: Mechanism, structure analysis and electronic properties. J. Mater. Chem. 2012, 22, 23996–24005.

    Article  Google Scholar 

  7. Shalom, M.; Inal, S.; Fettkenhauer, C.; Neher, D.; Antonietti, M. Improving carbon nitride photocatalysis by supramolecular preorganization of monomers. J. Am. Chem. Soc. 2013, 135, 7118–7121.

    Article  Google Scholar 

  8. Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.

    Google Scholar 

  9. Ge, J. M.; Zhang, B.; Lv, L. B.; Wang, H. H.; Ye, T. N.; Wei, X.; Su, J.; Wang, K. X.; Li, X. H.; Chen, J. S. Constructing holey graphene monoliths via supramolecular assembly: Enriching nitrogen heteroatoms up to the theoretical limit for hydrogen evolution reaction. Nano Energy 2015, 15, 567–575.

    Article  Google Scholar 

  10. Zheng, Y.; Jiao, Y.; Li, L. H.; Xing, T.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 2014, 8, 5290–5296.

    Article  Google Scholar 

  11. Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S. Z. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem., Int. Ed. 2013, 52, 3110–3116.

    Article  Google Scholar 

  12. Li, X. H.; Antonietti, M. Polycondensation of boron- and nitrogen-codoped holey graphene monoliths from molecules: Carbocatalysts for selective oxidation. Angew. Chem., Int. Ed. 2013, 52, 4572–4576.

    Article  Google Scholar 

  13. Lv, L. B.; Cui, T. L.; Zhang, B.; Wang, H. H.; Li, X. H.; Chen, J. S. Wrinkled graphene monoliths as superabsorbing building blocks for superhydrophobic and superhydrophilic surfaces (Angew. Chem. Int. Ed. 50/2015). Angew. Chem., Int. Ed. 2015, 54, 15299.

    Article  Google Scholar 

  14. Gopalakrishnan, D.; Damien, D.; Shaijumon, M. M. MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano 2014, 8, 5297–5303.

    Article  Google Scholar 

  15. Li, X. H.; Kurasch, S.; Kaiser, U.; Antonietti, M. Synthesis of monolayer-patched graphene from glucose. Angew. Chem., Int. Ed. 2012, 51, 9689–9692.

    Article  Google Scholar 

  16. Zhang, C. Z.; Hao, R.; Liao, H. B.; Hou, Y. L. Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy 2013, 2, 88–97.

    Article  Google Scholar 

  17. Zhao, Y.; Nakamura, R.; Kamiya, K.; Nakanishi, S.; Hashimoto, K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 2013, 4, 2390.

    Google Scholar 

  18. Yang, W.; Fellinger, T.-P.; Antonietti, M. Efficient metalfree oxygen reduction in alkaline medium on high-surfacearea mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. J. Am. Chem. Soc. 2011, 133, 206–209.

    Article  Google Scholar 

  19. Zhang, J.; Wang, R.; Liu, E. Z.; Gao, X. F.; Sun, Z. H.; Xiao, F. S.; Girgsdies, F.; Su, D. S. Spherical structures composed of multiwalled carbon nanotubes: Formation mechanism and catalytic performance. Angew. Chem., Int. Ed. 2012, 51, 7581–7585.

    Article  Google Scholar 

  20. Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.

    Article  Google Scholar 

  21. Ye, T. N.; Lv, L. B.; Li, X. H.; Xu, M.; Chen, J. S. Strongly veined carbon nanoleaves as a highly efficient metal-free electrocatalyst. Angew. Chem., Int. Ed. 2014, 53, 6905–6909.

    Article  Google Scholar 

  22. Xing, Z. C.; Tian, J. Q.; Liu, Q.; Asiri, A. M.; Jiang, P.; Sun, X. P. Holey graphene nanosheets: Large-scale rapid preparation and their application toward highly-effective water cleaning. Nanoscale 2014, 6, 11659–11663.

    Article  Google Scholar 

  23. Zhang, P. F.; Qiao, Z.-A.; Zhang, Z. Y.; Wan, S.; Dai, S. Mesoporous graphene-like carbon sheet: High-power supercapacitor and outstanding catalyst support. J. Mater. Chem. A 2014, 2, 12262–12269.

    Article  Google Scholar 

  24. Li, Y. G.; Zhou, W.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Wei, F.; Idrobo, J.-C.; Pennycook, S. J.; Dai, H. J. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat. Nanotechnol. 2012, 7, 394–400.

    Article  Google Scholar 

  25. Hu, J. Q.; Bando, Y.; Xu, F. F.; Li, Y. B.; Zhan, J. H.; Xu, J. Y.; Golberg, D. Growth and field-emission properties of crystalline, thin-walled carbon microtubes. Adv. Mater. 2004, 16, 153–156.

    Article  Google Scholar 

  26. Sheng, Z.-H.; Shao, L.; Chen, J.-J.; Bao, W.-J.; Wang, F.-B.; Xia, X.-H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4358.

    Article  Google Scholar 

  27. Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 2006, 5, 987–994.

    Article  Google Scholar 

  28. Wang, W.; Kumta, P. N. Nanostructured hybrid silicon/ carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes. ACS Nano 2010, 4, 2233–2241.

    Article  Google Scholar 

  29. Wick, P.; Louw-Gaume, A. E.; Kucki, M.; Krug, H. F.; Kostarelos, K.; Fadeel, B.; Dawson, K. A.; Salvati, A.; Vá zquez, E.; Ballerini, L. et al. Classification framework for graphene-based materials. Angew. Chem., Int. Ed. 2014, 53, 7714–7718.

    Article  Google Scholar 

  30. Mecklenburg, M.; Schuchardt, A.; Mishra, Y. K.; Kaps, S.; Adelung, R.; Lotnyk, A.; Kienle, L.; Schulte, K. Aerographite: Ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance. Adv. Mater. 2012, 24, 3486–3490.

    Article  Google Scholar 

  31. Meduri, P.; Kim, J. H.; Russell, H. B.; Jasinski, J.; Sumanasekera, G. U.; Sunkara, M. K. Thin-walled carbon microtubes as high-capacity and high-rate anodes in lithiumion batteries. J. Phys. Chem. C 2010, 114, 10621–10627.

    Article  Google Scholar 

  32. Wen, G. W.; Yu, H. M.; Huang, X. X. Synthesis of carbon microtube buckypaper by a gas pressure enhanced chemical vapor deposition method. Carbon 2011, 49, 4067–4069.

    Article  Google Scholar 

  33. Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764.

    Article  Google Scholar 

  34. Gao, M. R.; Cao, X.; Gao, Q.; Xu, Y. F.; Zheng, Y.-R.; Jiang, J.; Yu, S. H. Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation. ACS Nano 2014, 8, 3970–3978.

    Article  Google Scholar 

  35. Unger, K. Structure of porous adsorbents. Angew. Chem., Int. Ed. 1972, 11, 267–278.

    Article  Google Scholar 

  36. Dinh, C.-T.; Seo, Y.; Nguyen, T.-D.; Kleitz, F.; Do, T.-O. Controlled synthesis of titanate nanodisks as versatile building blocks for the design of hybrid nanostructures. Angew. Chem., Int. Ed. 2012, 51, 6608–6612.

    Article  Google Scholar 

  37. Wang, L. F.; Yang, R. T.; Sun, C. L. Graphene and other carbon sorbents for selective adsorption of thiophene from liquid fuel. AIChE J. 2013, 59, 29–32.

    Article  Google Scholar 

  38. Moussallem, I.; Jörissen, J.; Kunz, U.; Pinnow, S.; Turek, T. Chlor-alkali electrolysis with oxygen depolarized cathodes: History, present status and future prospects. J. Appl. Electrochem. 2008, 38, 1177–1194.

    Article  Google Scholar 

  39. Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.

    Article  Google Scholar 

  40. Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2014, 53, 7281–7285.

    Article  Google Scholar 

  41. Zhang, S.; Kang, P.; Ubnoske, S.; Brennaman, M. K.; Song, N.; House, R. L.; Glass, J. T.; Meyer, T. J. Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J. Am. Chem. Soc. 2014, 136, 7845–7848.

    Article  Google Scholar 

  42. Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

    Article  Google Scholar 

  43. Ge, J.; Cheng, G. H.; Chen, L. W. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films. Nanoscale 2011, 3, 3084–3088.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-Hao Li or Jie-Sheng Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Wang, HH., Su, H. et al. Nitrogen-doped graphene microtubes with opened inner voids: Highly efficient metal-free electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 9, 2606–2615 (2016). https://doi.org/10.1007/s12274-016-1147-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1147-1

Keywords

Navigation