Skip to main content
Log in

Controllable synthesis of elongated hexagonal bipyramid shaped La(OH)3 nanorods and the distribution of electric property by off-axis electron holography

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Rare earth oxides/hydroxides are important emerging materials owing to their unique properties. Shape-controlled synthesis of elongated hexagonal bipyramid shaped La(OH)3 nanorods with different aspect ratios and trigram-shaped LaCO3OH nanosheets was systematically carried out by controlling the reaction conditions. Hydrazine and polyvinylpyrrolidone (PVP) surfactants used in synthesis are assumed to play a key “dual-template” role in determining the aspect ratio and shape of the resulting nanostructures. Elongated hexagonal bipyramid shaped La(OH)3 nanorods were found to grow along the preferred orientation [0001]. Six equivalent crystallographic facets, \((20\bar 20)\), \((02\bar 20)\), \((2\bar 200)\), \((0\bar 220)\), \((\bar 2200)\), and \((\bar 2020)\) lattice planes, were found to be exposed on the side surfaces on each nanorod as confirmed by combined transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED) analyses. A double-polarization phenomenon was found to occur at the nanorod surfaces by employing off-axis electron holography, implying that the material could be used as an effective dielectric microwave absorber. La(OH)3 nanorods with larger aspect ratios exhibit better absorption properties with respect to the maximum reflection loss and effective absorbing bandwidth. Thus, a novel method towards the reasonable design of bipyramid shaped La(OH)3 nanorods exhibiting tunable microwave absorption properties is proposed based on our synthesis strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shapecontrolled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.

    Article  Google Scholar 

  2. Xiong, Y. J.; Xia, Y. N. Shape-controlled synthesis of metal nanostructures: The case of palladium. Adv. Mater. 2007, 19, 3385–3391.

    Article  Google Scholar 

  3. Xia, Y. N.; Halas, N. J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 2005, 30, 338–344.

    Article  Google Scholar 

  4. Tian, Z. Q.; Ren, B.; Li, J. F.; Yang, Z. L. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem. Commun. 2007, 3514–3534.

    Google Scholar 

  5. Haynes, C. L.; Yonzon, C. R.; Zhang, X. Y.; Van Duyne, R. P. Surface-enhanced Raman sensors: Early history and the development of sensors for quantitative biowarfare agent and glucose detection. J. Raman Spectrosc. 2005, 36, 471–484.

    Article  Google Scholar 

  6. Sosa, I. O.; Noguez, C.; Barrera, R. G. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B 2003, 107, 6269–6275.

    Article  Google Scholar 

  7. Lv, R. C.; Zhong, C. N.; Li, R. M.; Yang, P. P.; He, F.; Gai, S. L.; Hou, Z. Y.; Yang, G. X.; Lin, J. Multifunctional anticancer platform for multimodal imaging and visible light driven photodynamic/photothermal therapy. Chem. Mater. 2015, 27, 1751–1763.

    Article  Google Scholar 

  8. Kolmakov, A.; Klenov, D. O.; Lilach, Y.; Stemmer, S.; Moskovits, M. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 2005, 5, 667–673.

    Article  Google Scholar 

  9. Jin, R. C.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294, 1901–1903.

    Article  Google Scholar 

  10. Sun, Y. G.; Xia, Y. N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.

    Article  Google Scholar 

  11. Tao, A. R.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.

    Article  Google Scholar 

  12. Li, L. S.; Hu, J. T.; Yang, W. D.; Alivisatos, A. P. Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett. 2001, 1, 349–351.

    Article  Google Scholar 

  13. Peng, Z. A.; Peng, X. G. Nearly monodisperse and shapecontrolled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 2002, 124, 3343–3353.

    Article  Google Scholar 

  14. Lee, S. M.; Cho, S. N.; Cheon, J. Anisotropic shape control of colloidal inorganic nanocrystals. Adv. Mater. 2003, 15, 441–444.

    Article  Google Scholar 

  15. Peng, X. G. Mechanisms for the shape-control and shapeevolution of colloidal semiconductor nanocrystals. Adv. Mater. 2003, 15, 459–463.

    Article  Google Scholar 

  16. Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2003, 2, 382–385.

    Article  Google Scholar 

  17. Sapra, S.; Poppe, J.; Eychmüller, A. CdSe nanorod synthesis: A new approach. Small 2007, 3, 1886–1888.

    Article  Google Scholar 

  18. Xiao, X. L.; Liu, X. F.; Zhao, H.; Chen, D. F.; Liu, F. Z.; Xiang, J. H.; Hu, Z. B.; Li, Y. D. Facile shape control of Co3O4 and the effect of the crystal plane on electrochemical performance. Adv. Mater. 2012, 24, 5762–5766.

    Article  Google Scholar 

  19. Yin, A. X.; Liu, W. C.; Ke, J.; Zhu, W.; Gu, J.; Zhang, Y. W.; Yan, C. H. Ru nanocrystals with shape-dependent surfaceenhanced Raman spectra and catalytic properties: Controlled synthesis and DFT calculations. J. Am. Chem. Soc. 2012, 134, 20479–20489.

    Article  Google Scholar 

  20. Shiu, J. W.; Lan, C. M.; Chang, Y. C.; Wu, H. P.; Huang, W. K.; Diau, E. W. G. Size-controlled anatase titania single crystals with octahedron-like morphology for dye-sensitized solar cells. ACS Nano 2012, 6, 10862–10873.

    Google Scholar 

  21. Lu, A. H.; Salabas, E. L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem., Int. Ed. 2007, 46, 1222–1244.

    Article  Google Scholar 

  22. Li, C. X.; Lin, J. Rare earth fluoride nano-/microcrystals: Synthesis, surface modification and application. J. Mater. Chem. 2010, 20, 6831–6847.

    Article  Google Scholar 

  23. Bao, N. Z.; Shen, L. M.; An, W.; Padhan, P.; Turner, C. H.; Gupta, A. Formation mechanism and shape control of monodisperse magnetic CoFe2O4 nanocrystals. Chem. Mater. 2009, 21, 3458–3468.

    Article  Google Scholar 

  24. Zhang, S. M.; Zeng, H. C. Self-aßsembled hollow spheres of β-Ni(OH)2 and their derived nanomaterials. Chem. Mater. 2009, 21, 871–883.

    Article  Google Scholar 

  25. Daff, T. D.; de Leeuw, N. H. Ab initio molecular dynamics simulations of the cooperative adsorption of hydrazine and water on copper surfaces: Implications for shape control of nanoparticles. Chem. Mater. 2011, 23, 2718–2728.

    Article  Google Scholar 

  26. Hu, J. T.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32, 435–445.

    Article  Google Scholar 

  27. Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.

    Article  Google Scholar 

  28. Devan, R. S.; Patil, R. A.; Lin, J. H.; Ma, Y. R. Onedimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 2012, 22, 3326–3370.

    Article  Google Scholar 

  29. Bakkers, E. P. A. M.; Verheijen, M. A. Synthesis of InP nanotubes. J. Am. Chem. Soc. 2003, 125, 3440–3441.

    Article  Google Scholar 

  30. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947–1949.

    Article  Google Scholar 

  31. Duan, X. F.; Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 2000, 12, 298–302.

    Article  Google Scholar 

  32. Goldberger, J.; He, R. R.; Zhang, Y. F.; Lee, S. W.; Yan, H. Q.; Choi, H. J.; Yang, P. D. Single-crystal gallium nitride nanotubes. Nature 2003, 422, 599–602.

    Article  Google Scholar 

  33. Kong, X. Y.; Ding, Y.; Yang, R. S.; Wang, Z. L. Singlecrystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 2004, 303, 1348–1351.

    Article  Google Scholar 

  34. Ma, C.; Ding, Y.; Moore, D.; Wang, X. D.; Wang, Z. L. Single-crystal CdSe nanosaws. J. Am. Chem. Soc. 2004, 126, 708–709.

    Article  Google Scholar 

  35. Boulon, M. E.; Cucinotta, G.; Luzon, J.; Degl'Innocenti, C.; Perfetti, M.; Bernot, K.; Calvez, G.; Caneschi, A.; Sessoli, R. Magnetic anisotropy and spin-parity effect along the series of lanthanide complexes with DOTA. Angew. Chem., Int. Ed. 2013, 52, 350–354.

    Article  Google Scholar 

  36. Ju, Q.; Tu, D. T.; Liu, Y. S.; Li, R. F.; Zhu, H. M.; Chen, J. C.; Chen, Z.; Huang, M. D.; Chen, X. Y. Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/magnetic multimodal BioProbes. J. Am. Chem. Soc. 2012, 134, 1323–1330.

    Article  Google Scholar 

  37. Shao, Z. M.; Saitzek, S.; Roussel, P.; Desfeux, R. Stability limit of the layered-perovskite structure in Ln2Ti2O7 (Ln = lanthanide) thin films grown on (110)-oriented SrTiO3 substrates by the sol–gel route. J. Mater. Chem. 2012, 22, 24894–24901.

    Article  Google Scholar 

  38. Palmer, M. S.; Neurock, M.; Olken, M. M. Periodic density functional theory study of methane activation over La2O3: Activity of O2–, O–, O2 2–, oxygen point defect, and Sr2+-doped surface sites. J. Am. Chem. Soc. 2002, 124, 8452–8461.

    Article  Google Scholar 

  39. Boglio, C.; Lemière, G.; Hasenknopf, B.; Thorimbert, S.; Lacôte, E.; Malacria, M. Lanthanide complexes of the monovacant Dawson polyoxotungstate [a1-P2W17O61]10–as selective and recoverable Lewis acid catalysts. Angew. Chem., Int. Ed. 2006, 45, 3324–3327.

    Article  Google Scholar 

  40. Padhye, P.; Poddar, P. Static and dynamic photoluminescence and photocatalytic properties of uniform, monodispersed up/down-converting, highly luminescent, lanthanide-iondoped β-NaYF4 phosphor microcrystals with controlled multiform morphologies. J. Mater. Chem. A 2014, 2, 19189–19200.

    Article  Google Scholar 

  41. Ananias, D.; Ferreira, A.; Carlos, L. D.; Rocha, J. Multifunctional sodium lanthanide silicates: From blue emitters and infrared S-band amplifiers to X-ray phosphors. Adv. Mater. 2003, 15, 980–985.

    Article  Google Scholar 

  42. Zhu, H.; Chen, X.; Jin, L. M.; Wang, Q. J.; Wang, F.; Yu, S. F. Amplified spontaneous emission and lasing from lanthanide-doped up-conversion nanocrystals. ACS Nano 2013, 7, 11420–11426.

    Article  Google Scholar 

  43. Gao, R.; Zhao, M. J.; Guan, Y.; Fang, X. Y.; Li, X. H.; Yan, D. P. Ordered and flexible lanthanide complex thin films showing up-conversion and color-tunable luminescence. J. Mater. Chem. C 2014, 2, 9579–9586.

    Article  Google Scholar 

  44. Korzenski, M. B.; Lecoeur, P.; Mercey, B.; Chippaux, D.; Raveau, B.; Desfeux, R. PLD-grown Y2O3 thin films from Y metal: An advantageous alternative to films deposited from yttria. Chem. Mater. 2000, 12, 3139–3150.

    Article  Google Scholar 

  45. Capobianco, J. A.; Boyer, J. C.; Vetrone, F.; Speghini, A.; Bettinelli, M. Optical spectroscopy and upconversion studies of Ho3+-doped bulk and nanocrystalline Y2O3. Chem. Mater. 2002, 14, 2915–2921.

    Article  Google Scholar 

  46. Xu, A. W.; Fang, Y. P.; You, L. P.; Liu, H. Q. A simple method to synthesize Dy(OH)3 and DY2O3 nanotubes. J. Am. Chem. Soc. 2003, 125, 1494–1495.

    Article  Google Scholar 

  47. Jia, G.; Yang, M.; Song, Y. H.; You, H. P.; Zhang, H. J. General and facile method to prepare uniform Y2O3:Eu hollow microspheres. Cryst. Growth Des. 2009, 9, 301–307.

    Article  Google Scholar 

  48. Hu, C. G.; Liu, H.; Dong, W. T.; Zhang, Y. Y.; Bao, G.; Lao, C. S.; Wang, Z. L. La(OH)3 and La2O3 nanobelts—Synthesis and physical properties. Adv. Mater. 2007, 19, 470–474.

    Article  Google Scholar 

  49. Yan, R. X.; Sun, X. M.; Wang, X.; Peng, Q.; Li, Y. D. Crystal structures, anisotropic growth, and optical properties: Controlled synthesis of lanthanide orthophosphate one-dimensional nanomaterials. Chem.—Eur. J. 2005, 11, 2183–2195.

    Article  Google Scholar 

  50. Fang, Y. P.; Xu, A. W.; Song, R. Q.; Zhang, H. X.; You, L. P.; Yu, J. C.; Liu, H. Q. Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires. J. Am. Chem. Soc. 2003, 125, 16025–16034.

    Article  Google Scholar 

  51. Niu, F.; Cao, A. M.; Song, W. G.; Wan, L. J. La(OH)3 hollow nanostructures with trapezohedron morphologies using a new kirkendall diffusion couple. J. Phys. Chem. C 2008, 112, 17988–17993.

    Article  Google Scholar 

  52. Zheng, D. Z.; Shi, J. Y.; Lu, X. H.; Wang, C. S.; Liu, Z. Q.; Liang, C. L.; Liu, P.; Tong, Y. X. Controllable growth of La(OH)3 nanorod and nanotube arrays. CrystEngComm 2010, 12, 4066–4070.

    Article  Google Scholar 

  53. Feldgitscher, C.; Peterlik, H.; Ivanovici, S.; Puchberger, M.; Kickelbick, G. Crosslinked hybrid polymer matrices with nanostructure directing abilities for lanthanum hydroxide growth. Chem. Commun. 2009, 5564–5566.

    Google Scholar 

  54. González-Rovira, L.; Sánchez-Amaya, J. M.; López-Haro, M.; Hungria, A. B.; Boukha, Z.; Bernal, S.; Botana, F. J. Formation and characterization of nanotubes of La(OH)3 obtained using porous alumina membranes. Nanotechnology 2008, 19, 495305.

    Article  Google Scholar 

  55. Bocchetta, P.; Santamaria, M.; Di Quarto, F. Template electrosynthesis of La(OH)3 and Nd(OH)3 nanowires using porous anodic alumina membranes. Electrochem. Commun. 2007, 9, 683–688.

    Article  Google Scholar 

  56. Jia, G.; Huang, Y. J.; Song, Y. H.; Yang, M.; Zhang, L. H.; You, H. P. Controllable synthesis and luminescence properties of La(OH)3 and La(OH)3:Tb3+ nanocrystals with multiform morphologies. Eur. J. Inorg. Chem. 2009, 25, 3721–3726.

    Article  Google Scholar 

  57. Wang, X.; Li, Y. D. Rare-earth-compound nanowires, nanotubes, and fullerene-like nanoparticles: Synthesis, characterization, and properties. Chem.—Eur. J. 2003, 9, 5627–5635.

    Article  Google Scholar 

  58. Lv, R. C.; Yang, G. X.; Dai, Y. L.; Gai, S. L.; He, F.; Yang, P. P. Self-produced bubble-template synthesis of La2O3:Yb/Er@Au hollow spheres with markedly enhanced luminescence and release properties. CrystEngComm 2014, 16, 9612–9621.

    Article  Google Scholar 

  59. Lv, R. C.; Yang, G. X.; He, F.; Dai, Y. L.; Gai, S. L.; Yang, P. P. LaF3:Ln mesoporous spheres: Controllable synthesis, tunable luminescence and application for dual-modal chemo-/photo-thermal therapy. Nanoscale 2014, 6, 14799–14809.

    Article  Google Scholar 

  60. Wang, X.; Li, Y. D. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires. Angew. Chem. Int. Ed. 2002, 41, 4790–4793.

    Article  Google Scholar 

  61. Nishijo, J.; Oishi, O.; Judai, K.; Nishi, N. Facile and massproducible fabrication of one-dimensional Ag nanoparticle arrays. Chem. Mater. 2007, 19, 4627–4629.

    Article  Google Scholar 

  62. den Hertog, M. I.; Schmid, H.; Cooper, D.; Rouviere, J. L.; Bjö rk, M. T.; Riel, H.; Rivallin, P.; Karg, S.; Riess, W. Mapping active dopants in single silicon nanowires using off-axis electron holography. Nano Lett. 2009, 9, 3837–3843.

    Article  Google Scholar 

  63. Shah, A.; Ding, A.; Wang, Y. H.; Zhang, L.; Wang, D. X.; Muhammad, J.; Huang, H.; Duan, Y. P.; Dong, X. L.; Zhang, Z. D. Enhanced microwave absorption by arrayed carbon fibers and gradient dispersion of Fe nanoparticles in epoxy resin composites. Carbon 2016, 96, 987–997.

    Article  Google Scholar 

  64. Midgley, P. A. An introduction to off-axis electron holography. Micron 2001, 32, 167–184.

    Article  Google Scholar 

  65. Twitchett, A. C.; Dunin-Borkowski, R. E.; Hallifax, R. J.; Broom, R. F.; Midgley, P. A. Off-axis electron holography of unbiased and reverse-biased focused ion beam milled Si p-n junctions. Microsc. Microanal. 2005, 11, 66–78.

    Article  Google Scholar 

  66. Tian, H. F.; Sun, J. R.; Lu, H. B.; Jin, K. J.; Yang, H. X.; Yu, H. C.; Li, J. Q. Electrostatic potential in manganite-based heterojunctions by electron holography. Appl. Phys. Lett. 2005, 87, 164102.

    Article  Google Scholar 

  67. Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401–405.

    Article  Google Scholar 

  68. Liu, J. W.; Che, R. C.; Chen, H. J.; Zhang, F.; Xia, F.; Wu, Q. S.; Wang, M. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 2012, 8, 1214–1221.

    Article  Google Scholar 

  69. Xu, J. J.; Liu, J. W.; Che, R. C.; Liang, C. Y.; Cao, M. S.; Li, Y.; Liu, Z. W. Polarization enhancement of microwave absorption by increasing aspect ratio of ellipsoidal nanorattles with Fe3O4 cores and hierarchical CuSiO3 shells. Nanoscale 2014, 6, 5782–5790.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renchao Che.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Z., Liang, C., Bi, H. et al. Controllable synthesis of elongated hexagonal bipyramid shaped La(OH)3 nanorods and the distribution of electric property by off-axis electron holography. Nano Res. 9, 2561–2571 (2016). https://doi.org/10.1007/s12274-016-1142-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1142-6

Keywords

Navigation