Skip to main content
Log in

Fabrication of ultrathin Zn(OH)2 nanosheets as drug carriers

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ultrathin two-dimensional (2D) porous Zn(OH)2 nanosheets (PNs) were fabricated by means of one-dimensional Cu nanowires as backbones. The PNs have thickness of approximately 3.8 nm and pore size of 4–10 nm. To form “smart” porous nanosheets, DNA aptamers were covalently conjugated to the surface of PNs. These ultrathin nanosheets show good biocompatibility, efficient cellular uptake, and promising pH-stimulated drug release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Liquid exfoliation of layered materials. Science 2013, 340, 6139.

    Article  Google Scholar 

  2. Zhao, G. X.; Li, J. X.; Jiang, L.; Dong, H. L.; Wang, X. K.; Hu, W. P. Synthesizing MnO2 nanosheets from graphene oxide templates for high performance pseudosupercapacitors. Chem. Sci. 2012, 3, 433–437.

    Article  Google Scholar 

  3. Gao, D. Q.; Xu, Q.; Zhang, J.; Yang, Z. L.; Si, M. S.; Yan, Z. J.; Xue, D. S. Defect-related ferromagnetism in ultrathin metal-free g-C3N4 nanosheets. Nanoscale 2014, 6, 2577–2581.

    Article  Google Scholar 

  4. Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X. Z.; Feng, L. Z.; Sun, B. Q.; Liu, Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 2014, 26, 3433–3440.

    Article  Google Scholar 

  5. Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

    Article  Google Scholar 

  6. Karunadasa, H. I.; Montalvo, E.; Sun, Y. J.; Majda, M.; Long, J. R.; Chang, C. J. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 2012, 335, 698–702.

    Article  Google Scholar 

  7. Zhu, C. F.; Zeng, Z. Y.; Li, H.; Li, F.; Fan, C. H.; Zhang, H. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 2013, 135, 5998–6001.

    Article  Google Scholar 

  8. Yang, D.; Lu, Z. Y.; Rui, X. H.; Huang, X.; Li, H.; Zhu, J. X.; Zhang, W. Y.; Lam, Y. M.; Hng, H. H.; Zhang, H. et al. Synthesis of two-dimensional transition-metal phosphates with highly ordered mesoporous structures for lithium-ion battery applications. Angew. Chem. 2014, 126, 9506–9509.

    Article  Google Scholar 

  9. Cai, R.; Chen, J.; Yang, D.; Zhang, Z. Y.; Peng, S. J.; Wu, J.; Zhang, W. Y.; Zhu, C. F.; Lim, T. M.; Zhang, H. et al. Solvothermal-induced conversion of one-dimensional multilayer nanotubes to two-dimensional hydrophilic VOx nanosheets: Synthesis and water treatment application. ACS Appl. Mater. Interfaces 2013, 5, 10389–10394.

    Article  Google Scholar 

  10. Zhao, Z. L.; Fan, H. H.; Zhou, G. F.; Bai, H. R.; Liang, H.; Wang, X. B.; Zhang, X. B.; Tan, W. H. Activatable fluorescence/MRI bimodal platform for tumor cell imaging via MnO2 nanosheet-aptamer nanoprobe. J. Am. Chem. Soc. 2014, 136, 11220–11223.

    Article  Google Scholar 

  11. Xiao, J. W.; Yang, S. X.; Wan, L.; Xiao, F.; Wang, S. Electrodeposition of manganese oxide nanosheets on a continuous three-dimensional nickel porous scaffold for high performance electrochemical capacitors. J. Power Sources 2014, 245, 1027–1034.

    Article  Google Scholar 

  12. Yang, Y. Q.; Yang, Y. Q.; Wu, H. X.; Guo, S. W. Control of the formation of rod-like ZnO mesocrystals and their photocatalytic properties. CrystEngComm 2013, 15, 2608–2615.

    Article  Google Scholar 

  13. Dai, Z. R.; Pan, Z. W.; Wang, Z. L. Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 2003, 13, 9–24.

    Article  Google Scholar 

  14. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

    Article  Google Scholar 

  15. Hu, X. L.; Masuda, Y.; Ohji, T.; Kato, K. Fabrication of Zn(OH)2/ZnO nanosheet-ZnO nanoarray hybrid structured films by a dissolution-recrystallization route. J. Am. Ceram. Soc. 2010, 93, 881–886.

    Article  Google Scholar 

  16. Cai, R.; Chen, J.; Zhu, J. X.; Xu, C.; Zhang, W. Y.; Zhang, C. M.; Shi, W. H.; Tan, H. T.; Yang, D.; Hng, H. H. et al. Synthesis of CuxS/Cu nanotubes and their lithium storage properties. J. Phys. Chem. C 2012, 116, 12468–12474.

    Article  Google Scholar 

  17. Shahmiri, M.; Ibrahim, N. A.; Shayesteh, F.; Asim, N.; Motallebi, N. Preparation of PVP-coated copper oxide nanosheets as antibacterial and antifungal agents. J. Mater. Res. 2013, 28, 3109–3118.

    Article  Google Scholar 

  18. Palomar-Pardave, M.; Gonzales, I.; Romero-Romo, M.; Oropez, T. MES 23: Electrochemistry, Nanotechnology, and Biomaterials; Electrochemical Society: Pennington, NJ, USA, 2008.

    Google Scholar 

  19. Rich, R. Inorganic Reactions in Water; Springer: Berlin, Heidelberg, Germany, 2007.

    Book  Google Scholar 

  20. Emeléus, H. J.; Sharpe, A. G. Advances in Inorganic Chemistry and Radiochemistry; Academic Press: New York, 1964.

    Google Scholar 

  21. Pung, S.-Y.; Lee, W.-P.; Aziz, A. Kinetic study of organic dye degradation using ZnO particles with different morphologies as a photocatalyst. Int. J. Inorg. Chem. 2012, 2012, Article ID 608183.

    Google Scholar 

  22. Alyea, H. N. Heat of solution of Na2S2O3(5H2O). J. Chem. Educ. 1969, 46, A34.

    Google Scholar 

  23. Huang, M.; Tso, E.; Datye, A. K.; Prairie, M. R.; Stange, B. M. Removal of silver in photographic processing waste by TiO2-based photocatalysis. Environ. Sci. Technol. 1996, 30, 3084–3088.

    Article  Google Scholar 

  24. Nai, J. W.; Tian, Y.; Guan, X.; Guo, L. Pearson’s principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages. J. Am. Chem. Soc. 2013, 135, 16082–16091.

    Article  Google Scholar 

  25. Cai, R.; Liu, H.; Zhang, W. Y.; Tan, H. T.; Yang, D.; Huang, Y. Z.; Hng, H. H.; Lim, T. M.; Yan, Q. Y. Controlled synthesis of double-wall a-FePO4 nanotubes and their LIB cathode properties. Small 2013, 9, 1036–1041.

    Article  Google Scholar 

  26. Chen, J. S.; Liu, J.; Qiao, S. Z.; Xu, R.; Lou, X. W. Formation of large 2D nanosheets via PVP-assisted assembly of anatase TiO2 nanomosaics. Chem. Commun. 2011, 47, 10443–10445.

    Article  Google Scholar 

  27. Adair, J. H.; Suvaci, E. Morphological control of particles. Curr. Opin. Colloid Interface Sci. 2000, 5, 160–167.

    Article  Google Scholar 

  28. Wang, R. W.; Zhu, G. Z.; Mei, L.; Xie, Y.; Ma, H. B.; Ye, M.; Qing, F. L.; Tan, W. H. Automated modular synthesis of aptamer-drug conjugates for targeted drug delivery. J. Am. Chem. Soc. 2014, 136, 2731–2734.

    Article  Google Scholar 

  29. Acres, R. G.; Ellis, A. V.; Alvino, J.; Lenahan, C. E.; Khodakov, D. A.; Metha, G. F.; Andersson, G. G. Molecular structure of 3-aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces. J. Phys. Chem. C 2012, 116, 6289–6297.

    Article  Google Scholar 

  30. Dixit, C. K.; Vashist, S. K.; O’Neill, F. T.; O’Reilly, B.; MacCraith, B. D.; O’Kennedy, R. Development of a high sensitivity rapid sandwich ELISA procedure and its comparison with the conventional approach. Anal. Chem. 2010, 82, 7049–7052.

    Article  Google Scholar 

  31. Hermanson, G. T. Bioconjugate Techniques, 2nd ed.; Academic Press: New York, 2008; pp 871–879.

    Google Scholar 

  32. Yong, Y.; Zhou, L. J.; Gu, Z. J.; Yan, L.; Tian, G.; Zheng, X. P.; Liu, X. D.; Zhang, X.; Shi, J. X.; Cong, W. S. et al. WS2 nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells. Nanoscale 2014, 6, 10394–10403.

    Article  Google Scholar 

  33. Xiao, Z. Y.; Shangguan, D.; Cao, Z. H.; Fang, X. H.; Tan, W. H. Cell-specific internalization study of an aptamer from whole cell selection. Chem.—Eur. J. 2008, 14, 1769–1775.

    Article  Google Scholar 

  34. Weiss, R. B.; Sarosy, G.; Clagett-Carr, K.; Russo, M.; Leyland-Jones, B. Anthracycline analogs: The past, present, and future. Cancer Chemother. Pharmacol. 1986, 18, 185–197.

    Article  Google Scholar 

  35. Cooper, G. M. The Cell-A Molecular Approach, 2nd ed.; Sinauer Associates, Inc.: Washington, D. C., 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Tan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, R., Yang, D., Wu, J. et al. Fabrication of ultrathin Zn(OH)2 nanosheets as drug carriers. Nano Res. 9, 2520–2530 (2016). https://doi.org/10.1007/s12274-016-1138-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1138-2

Keywords

Navigation