Skip to main content
Log in

Platinum-coordinated graphitic carbon nitride nanosheet used for targeted inhibition of amyloid β-peptide aggregation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Amyloid β-peptide (Aβ) aggregation is a critical step in the pathogenesis of Alzheimer’s disease (AD). Inhibition of Aβ production, dissolution of existing aggregates and clearance of Aβ represent valid therapeutic strategies against AD. Herein, a novel platinum(II)-coordinated graphitic carbon nitride (g-C3N4) nanosheet (g-C3N4@Pt) has been designed to covalently bind to Aβ and modulate the peptide’s aggregation and toxicity. Furthermore, g-C3N4@Pt nanosheets possess high photocatalytic activity and can oxygenate Aβ upon visible light irradiation, remarkably attenuating both the aggregation potency and neurotoxicity of Aβ. Due to its ability to cross the blood-brain barrier (BBB) and its good biocompatibility, g-C3N4@Pt nanosheet is a promising inhibitor of Aβ aggregation. This study may serve as a model for the engineering of novel multifunctional nanomaterials used for the treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hardy, J.; Selkoe, D. J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002, 297, 353–356.

    Article  Google Scholar 

  2. Hamley, I. W. The amyloid beta peptide: A chemist’s perspective. Role in Alzheimer’s and fibrillization. Chem. Rev. 2012, 112, 5147–5192.

    Article  Google Scholar 

  3. Jakob-Roetne, R.; Jacobsen, H. Alzheimer’s disease: From pathology to therapeutic approaches. Angew. Chem., Int. Ed. 2009, 48, 3030–3059.

    Article  Google Scholar 

  4. Gaggelli, E.; Kozlowski, H.; Valensin, D.; Valensin, G. Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson's diseases and amyotrophic lateral sclerosis). Chem. Rev. 2006, 106, 1995–2044.

    Article  Google Scholar 

  5. Takeda, S.; Sato, N.; Uchio-Yamada, K.; Sawada, K.; Kunieda, T.; Takeuchi, D.; Kurinami, H.; Shinohara, M.; Rakugi, H.; Morishita, R. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Aβ deposition in an Alzheimer mouse model with diabetes. Proc. Natl. Acad. Sci. USA 2010, 107, 7036–7041.

    Article  Google Scholar 

  6. Jin, M.; Shepardson, N.; Yang, T.; Chen, G.; Walsh, D.; Selkoe, D. J. Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc. Natl. Acad. Sci. USA 2011, 108, 5819–5824.

    Article  Google Scholar 

  7. De Felice, F. G.; Vieira, M. N. N.; Bomfim, T. R.; Decker, H.; Velasco, P. T.; Lambert, M. P.; Viola, K. L.; Zhao, W. Q.; Ferreira, S. T.; Klein, W. L. Protection of synapses against Alzheimer’s-linked toxins: Insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc. Natl. Acad. Sci. USA 2009, 106, 1971–1976.

    Article  Google Scholar 

  8. Ono, K.; Condron, M. M.; Teplow, D. B. Structureneurotoxicity relationships of amyloid β-protein oligomers. Proc. Natl. Acad. Sci. USA 2009, 106, 14745–14750.

    Article  Google Scholar 

  9. Takahashi, T.; Mihara, H. Peptide and protein mimetics inhibiting amyloid β-peptide aggregation. Acc. Chem. Res. 2008, 41, 1309–1318.

    Article  Google Scholar 

  10. Frydman-Marom, A.; Rechter, M.; Shefler, I.; Bram, Y.; Shalev, D. E.; Gazit, E. Cognitive-performance recovery of Alzheimer's disease model mice by modulation of early soluble amyloidal assemblies. Angew. Chem., Int. Ed. 2009, 48, 1981–1986.

    Article  Google Scholar 

  11. Tjernberg, L. O.; Näslund, J.; Lindqvist, F.; Johansson, J.; Karlström, A. R.; Thyberg, J.; Terenius, L.; Nordstedt, C. Arrest of β-amyloid fibril formation by a pentapeptide ligand. J. Biol. Chem. 1996, 271, 8545–8548.

    Article  Google Scholar 

  12. Ehrnhoefer, D. E.; Bieschke, J.; Boeddrich, A.; Herbst, M.; Masino, L.; Lurz, R.; Engemann, S.; Pastore, A.; Wanker, E. E. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat. Struct. Mol. Biol. 2008, 15, 558–566.

    Article  Google Scholar 

  13. Matlack, K. E. S.; Tardiff, D. F.; Narayan, P.; Hamamichi, S.; Caldwell, K. A.; Caldwell, G. A.; Lindquist, S. Clioquinol promotes the degradation of metal-dependent amyloid-β (Aβ) oligomers to restore endocytosis and ameliorate Aβ toxicity. Proc. Natl. Acad. Sci. USA 2014, 111, 4013–4018.

    Article  Google Scholar 

  14. Barnham, K. J.; Kenche, V. B.; Ciccotosto, G. D.; Smith, D. P.; Tew, D. J.; Liu, X.; Perez, K.; Cranston, G. A.; Johanssen, T. J.; Volitakis, I. et al. Platinum-based inhibitors of amyloid-β as therapeutic agents for Alzheimer's disease. Proc. Natl. Acad. Sci. USA 2008, 105, 6813–6818.

    Article  Google Scholar 

  15. Hureau, C.; Faller, P. Platinoid complexes to target monomeric disordered peptides: A forthcoming solution against amyloid diseases? Dalton Trans. 2014, 43, 4233–4237.

    Article  Google Scholar 

  16. Scott, L. E.; Orvig, C. Medicinal inorganic chemistry approaches to passivation and removal of aberrant metal ions in disease. Chem. Rev. 2009, 109, 4885–4910.

    Article  Google Scholar 

  17. Cassagnes, L.-E.; Hervé, V.; Nepveu, F.; Hureau, C.; Faller, P.; Collin, F. The catalytically active copper-amyloid-beta state: Coordination site responsible for reactive oxygen species production. Angew. Chem., Int. Ed. 2013, 52, 11110–11113.

    Article  Google Scholar 

  18. Lim, S.; Paterson, B. M.; Fodero-Tavoletti, M. T.; O’Keefe, G. J.; Cappai, R.; Barnham, K. J.; Villemagne, V. L.; Donnelly, P. S. A copper radiopharmaceutical for diagnostic imaging of Alzheimer’s disease: A bis(thiosemicarbazonato)copper(II) complex that binds to amyloid-β plaques. Chem. Commun. 2010, 46, 5437–5439.

    Article  Google Scholar 

  19. Ma, G. L.; Huang, F.; Pu, X. W.; Jia, L. Y.; Jiang, T.; Li, L. Z.; Liu, Y. Z. Identification of [PtCl2(phen)] binding modes in amyloid-β peptide and the mechanism of aggregation inhibition. Chem.—Eur. J. 2011, 17, 11657–11666.

    Article  Google Scholar 

  20. Kenche, V. B.; Hung, L. W.; Perez, K.; Volitakes, I.; Ciccotosto, G.; Kwok, J.; Critch, N.; Sherratt, N.; Cortes, M.; Lal, V. et al. Development of a platinum complex as an anti-amyloid agent for the therapy of Alzheimer's disease. Angew. Chem., Int. Ed. 2013, 52, 3374–3378.

    Article  Google Scholar 

  21. Man, B. Y.-W.; Chan, H.-M.; Leung, C.-H.; Chan, D. S.-H.; Bai, L.-P.; Jiang, Z.-H.; Li, H.-W.; Ma, D.-L. Group 9 metal-based inhibitors of β-amyloid (1–40) fibrillation as potential therapeutic agents for Alzheimer's disease. Chem. Sci. 2011, 2, 917–921.

    Article  Google Scholar 

  22. Cabaleiro-Lago, C.; Quinlan-Pluck, F.; Lynch, I.; Lindman, S.; Minogue, A. M.; Thulin, E.; Walsh, D. M.; Dawson, K. A.; Linse, S. Inhibition of amyloid β protein fibrillation by polymeric nanoparticles. J. Am. Chem. Soc. 2008, 130, 15437–15443.

    Article  Google Scholar 

  23. Yoo, S. I.; Yang, M.; Brender, J. R.; Subramanian, V.; Sun, K.; Joo, N. E.; Jeong, S.-H.; Ramamoorthy, A.; Kotov, N. A. Inhibition of amyloid peptide fibrillation by inorganic nanoparticles: Functional similarities with proteins. Angew. Chem., Int. Ed. 2011, 50, 5110–5115.

    Article  Google Scholar 

  24. Mahmoudi, M.; Akhavan, O.; Ghavami, M.; Rezaeeef, F.; Ghiasi, S. M. A. Graphene oxide strongly inhibits amyloid beta fibrillation. Nanoscale 2012, 4, 7322–7325.

    Article  Google Scholar 

  25. Zheng, Y.; Jiao, Y.; Chen, J.; Liu, J.; Liang, J.; Du, A. J.; Zhang, W. M.; Zhu, Z. H.; Smith, S. C.; Jaroniec, M. et al. Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. J. Am. Chem. Soc. 2011, 133, 20116–20119.

    Article  Google Scholar 

  26. Yan, S. C.; Li, Z. S.; Zou, Z. G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 2009, 25, 10397–10401.

    Article  Google Scholar 

  27. Komatsu, T. Attempted chemical synthesis of graphite-like carbon nitride. J. Mater. Chem. 2001, 11, 799–801.

    Article  Google Scholar 

  28. Zheng, Y.; Lin, L. H.; Wang, B.; Wang, X. C. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem., Int. Ed. 2015, 54, 12868–12884.

    Article  Google Scholar 

  29. Zhang, J. S.; Chen, Y.; Wang, X. C. Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications. Energy Environ. Sci. 2015, 8, 3092–3108.

    Article  Google Scholar 

  30. Hou, Y.; Wen, Z. H.; Cui, S. M.; Guo, X. R.; Chen, J. H. Constructing 2D porous graphitic C3N4 nanosheets/ nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater. 2013, 25, 6291–6297.

    Article  Google Scholar 

  31. Fang, Y.; Lv, Y. Y.; Che, R. C.; Wu, H. Y.; Zhang, X. H.; Gu, D.; Zheng, G. F.; Zhao, D. Y. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: Synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 2013, 135, 1524–1530.

    Article  Google Scholar 

  32. Tian, J. Q.; Liu, Q.; Ge, C. J.; Xing, Z. C.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Ultrathin graphitic carbon nitride nanosheets: A low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application. Nanoscale 2013, 5, 8921–8924.

    Article  Google Scholar 

  33. Wang, Q. B.; Wang, W.; Lei, J. P.; Xu, N.; Gao, F. L.; Ju, H. X. Fluorescence quenching of carbon nitride nanosheet through its interaction with DNA for versatile fluorescence sensing. Anal. Chem. 2013, 85, 12182–12188.

    Article  Google Scholar 

  34. Zhang, X. D.; Xie, X.; Wang, H.; Zhang, J. J.; Pan, B. C.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2013, 135, 18–21.

    Article  Google Scholar 

  35. Lee, E. Z.; Jun, Y. S.; Hong, W. H.; Thomas, A.; Jin, M. M. Cubic mesoporous graphitic carbon(IV) nitride: An all-in-one chemosensor for selective optical sensing of metal ions. Angew. Chem., Int. Ed. 2010, 49, 9706–9710.

    Article  Google Scholar 

  36. Tang, Y. R.; Song, H. J.; Su, Y. Y.; Lv, Y. Turn-on persistent luminescence probe based on graphitic carbon nitride for imaging detection of biothiols in biological fluids. Anal. Chem. 2013, 85, 11876–11884.

    Article  Google Scholar 

  37. Li, M.; Zhao, C. Q.; Yang, X. J.; Ren, J. S.; Xu, C.; Qu, X. G. In situ monitoring Alzheimer's disease β-amyloid aggregation and screening of Aβ inhibitors using a perylene probe. Small 2013, 9, 52–55.

    Article  Google Scholar 

  38. Klement, K.; Wieligmann, K.; Meinhardt, J.; Hortschansky, P.; Richter, W.; Fändrich, M. Effect of different salt ions on the propensity of aggregation and on the structure of Alzheimer’s abeta(1–40) amyloid fibrils. J. Mol. Biol. 2007, 373, 1321–1333.

    Article  Google Scholar 

  39. Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

    Article  Google Scholar 

  40. Su, F. Z.; Mathew, S. C.; Lipner, G.; Fu, X. Z.; Antonietti, M.; Blechert, S.; Wang, X. C. mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. J. Am. Chem. Soc. 2010, 132, 16299–16301.

    Article  Google Scholar 

  41. Dong, F.; Wu, L. W.; Sun, Y. J.; Fu, M.; Wu, Z. B.; Lee, S. C. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts. J. Mater. Chem. 2011, 21, 15171–15174.

    Article  Google Scholar 

  42. Shalom, M.; Molinari, V.; Esposito, D.; Clavel, G.; Ressnig, D.; Giordano, C.; Antonietti, M. Sponge-like nickel and nickel nitride structures for catalytic applications. Adv. Mater. 2014, 26, 1272–1276.

    Article  Google Scholar 

  43. Geng, J.; Li, M.; Ren, J. S.; Wang, E. B.; Qu, X. G. Polyoxometalates as inhibitors of the aggregation of amyloid β peptides associated with Alzheimer’s disease. Angew. Chem., Int. Ed. 2011, 50, 4184–4188.

    Article  Google Scholar 

  44. Yu, H. J.; Li, M.; Liu, G. P.; Geng, J.; Wang, J. Z.; Ren, J. S.; Zhao, C. Q.; Qu, X. G. Metallosupramolecular complex targeting an α/β discordant stretch of amyloid β peptide. Chem. Sci. 2012, 3, 3145–3153.

    Article  Google Scholar 

  45. Schlamadinger, D. E.; Kats, D. I.; Kim, J. E. Quenching of tryptophan fluorescence in unfolded cytochrome c: A biophysics experiment for physical chemistry students. J. Chem. Educ. 2010, 87, 961–964.

    Article  Google Scholar 

  46. Puchalski, M. M.; Morra, M. J.; von Wandruszka, R. Assessment of inner filter effect corrections in fluorimetry. Fresenius J. Anal. Chem. 1991, 340, 341–344.

    Article  Google Scholar 

  47. Cheng, N. Y.; Tian, J. Q.; Liu, Q.; Ge, C. J.; Qusti, A. H.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Au-nanoparticleloaded graphitic carbon nitride nanosheets: Green photocatalytic synthesis and application toward the degradation of organic pollutants. ACS Appl. Mater. Interfaces 2013, 5, 6815–6819.

    Article  Google Scholar 

  48. Pei, W. B.; Wu, J. S.; Liu, J. L.; Ren, X. M.; Shen, L. J. Ion-pair complexes with strong near infrared absorbance: Syntheses, crystal structures and spectroscopic properties. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010, 75, 191–197.

    Article  Google Scholar 

  49. Tian, J. Q.; Liu, Q.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Ultrathin graphitic carbon nitride nanosheet: A highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Anal. Chem. 2013, 85, 5595–5599.

    Article  Google Scholar 

  50. Li, M.; Xu, C.; Wu, L.; Ren, J. S.; Wang, E. B.; Qu, X. G. Self-assembled peptide-polyoxometalate hybrid nanospheres: Two in one enhances targeted inhibition of amyloid β-peptide aggregation associated with Alzheimer’s disease. Small 2013, 9, 3455–3461.

    Article  Google Scholar 

  51. Mishra, R.; Bulic, B.; Sellin, D.; Jha, S.; Waldmann, H.; Winter, R. Small-molecule inhibitors of islet amyloid polypeptide fibril formation. Angew. Chem., Int. Ed. 2008, 47, 4679–4682.

    Article  Google Scholar 

  52. Li, M.; Yang, X. J.; Ren, J. S.; Qu, K. G.; Qu, X. G. Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer's disease. Adv. Mater. 2012, 24, 1722–1728.

    Article  Google Scholar 

  53. Petkova, A. T.; Leapman, R. D.; Guo, Z. H.; Yau, W.-M.; Mattson, M. P.; Tycko, R. Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils. Science 2005, 307, 262–265.

    Article  Google Scholar 

  54. Balducci, C.; Beeg, M.; Stravalaci, M.; Bastone, A.; Sclip, A.; Biasini, E.; Tapella, L.; Colombo, L.; Manzoni, C.; Borsello, T. et al. Synthetic amyloid-β oligomers impair long-term memory independently of cellular prion protein. Proc. Natl. Acad. Sci. USA 2010, 107, 2295–2300.

    Article  Google Scholar 

  55. Li, M.; Xu, C.; Ren, J. S.; Wang, E. B.; Qu, X. G. Photodegradation of β-sheet amyloid fibrils associated with Alzheimer’s disease by using polyoxometalates as photocatalysts. Chem. Commun. 2013, 49, 11394–11396.

    Article  Google Scholar 

  56. Li, M.; Liu, Z.; Ren, J. S.; Qu, X. G. Inhibition of metalinduced amyloid aggregation using light-responsive magnetic nanoparticle prochelator conjugates. Chem. Sci. 2012, 3, 868–873.

    Article  Google Scholar 

  57. Rastogi, R. P.; Singh, S. P.; Häder, D.-P.; Sinha, R. P. Detection of reactive oxygen species (ROS) by the oxidantsensing probe 2',7'-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem. Biophys. Res. Commun. 2010, 397, 603–607.

    Article  Google Scholar 

  58. Ahmed, M. H.; Keyesa, T. E.; Byrne, J. A. The photocatalytic inactivation effect of Ag-TiO2 on β-amyloid peptide (1–42). J. Photoch. Photobio. A: Chem. 2013, 254, 1–11.

    Article  Google Scholar 

  59. Pramanik, D.; Ghosh, C.; Dey, S. G. Heme-Cu bound Aβ peptides: Spectroscopic characterization, reactivity, and relevance to Alzheimer's disease. J. Am. Chem. Soc. 2011, 133, 15545–15552.

    Article  Google Scholar 

  60. Taniguchi, A.; Sasaki, D.; Shiohara, A.; Iwatsubo, T.; Tomita, T.; Sohma, Y.; Kanai, M. Attenuation of the aggregation and neurotoxicity of amyloid-β peptides by catalytic photooxygenation. Angew. Chem., Int. Ed. 2014, 53, 1382–1385.

    Article  Google Scholar 

  61. D’Angelo, B.; Santucci, S.; Benedetti, E.; Di Loreto, S.; Phani, R.; Falone, S.; Amicarelli, F.; Cerù, M.; Cimini, A. Cerium oxide nanoparticles trigger neuronal survival in a human Alzheimer disease model by modulating BDNF pathway. Curr. Nanosci. 2009, 5, 167–176.

    Article  Google Scholar 

  62. Li, M.; Shi, P.; Xu, C.; Ren, J. S.; Qu, X. G. Cerium oxide caged metal chelator: Anti-aggregation and anti-oxidation integrated H2O2-responsive controlled drug release for potential Alzheimer's disease treatment. Chem. Sci. 2013, 4, 2536–2542.

    Article  Google Scholar 

  63. Harris, M. E.; Hensley, K.; Butterfield, D. A.; Leedle, R. A.; Carney, J. M. Direct evidence of oxidative injury produced by the Alzheimer's β-amyloid peptide (1–40) in cultured hippocampal neurons. Exp. Neurol. 1995, 131, 193–202.

    Article  Google Scholar 

  64. Miranda, S.; Opazo, C.; Larrondo, L. F.; Muñoz, F. J.; Ruiz, F.; Leighton, F.; Inestrosa, N. C. The role of oxidative stress in the toxicity induced by amyloid beta-peptide in Alzheimer's disease. Prog. Neurobiol. 2000, 62, 633–648.

    Article  Google Scholar 

  65. Liu, Y. L.; Ai, K. L.; Liu, J. H.; Yuan, Q. H.; He, Y. Y.; Lu, L. H. A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging. Angew. Chem., Int. Ed. 2012, 51, 1437–1442.

    Article  Google Scholar 

  66. Liu, Z.; Pu, F.; Huang, S.; Yuan, Q. H.; Ren, J. S.; Qu, X. G. Long-circulating Gd2O3:Yb3+, Er3+ up-conversion nanoprobes as high-performance contrast agents for multi-modality imaging. Biomaterials 2013, 34, 1712–1721.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Qu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Guan, Y., Chen, Z. et al. Platinum-coordinated graphitic carbon nitride nanosheet used for targeted inhibition of amyloid β-peptide aggregation. Nano Res. 9, 2411–2423 (2016). https://doi.org/10.1007/s12274-016-1127-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1127-5

Keywords

Navigation