Skip to main content
Log in

Pt/Y2O3:Eu3+ composite nanotubes: Enhanced photoluminescence and application in dye-sensitized solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Y(OH)3:Eu3+ nanotubes were synthesized using a facile hydrothermal method, and then, Pt particles were grown on the surface of the nanotubes using a combination of vacuum extraction and annealing. The resulting Pt/Y2O3:Eu3+ composite nanotubes not only exhibited enhanced red luminescence under 255- or 468-nm excitation but could also be used to improve the efficiency of dye-sensitized solar cells, resulting in an efficiency of 8.33%, which represents a significant enhancement of 11.96% compared with a solar cell without the composite nanotubes. Electrochemical impedance spectroscopy results indicated that the interfacial resistance of the TiO2–dye|I 3 /I electrolyte interface of the TiO2–Pt/Y2O3:Eu3+ composite cell was much smaller than that of a pure TiO2 cell. In addition, the TiO2–Pt/Y2O3:Eu3+ composite cell exhibited a shorter electron transport time and longer electron recombination time than the pure TiO2 cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.

    Article  Google Scholar 

  2. Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Y. Upconversion luminescent materials: Advances and applications. Chem. Rev. 2015, 115, 395–465.

    Article  Google Scholar 

  3. Li, G. G.; Tian, Y.; Zhao, Y.; Lin, J. Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs. Chem. Soc. Rev. 2015, 44, 8688–8713.

    Article  Google Scholar 

  4. Zhang, J.; Yuan, Y.; Wang, Y.; Sun, F. F.; Liang, G. L.; Jiang, Z.; Yu, S. H. Microwave-assisted synthesis of photoluminescent glutathione-capped Au/Ag nanoclusters: A unique sensor-on-a-nanoparticle for metal ions, anions, and small molecules. Nano Res. 2015, 8, 2329–2339.

    Article  Google Scholar 

  5. Lin, L. W.; Sun, X. Y.; Jiang, Y.; He, Y. H. Sol-hydrothermal synthesis and optical properties of Eu3+, Tb3+-codoped one-dimensional strontium germanate full color nano-phosphors Nanoscale 2013, 5, 12518–12531.

    Article  Google Scholar 

  6. Kaczmarek, A. M.; van Hecke, K.; van Deun, R. Nano- and micro-sized rare-earth carbonates and their use as precursors and sacrificial templates for the synthesis of new innovative materials. Chem. Soc. Rev. 2015, 44, 2032–2059.

    Article  Google Scholar 

  7. Xia, Z. G.; Liu, R. S. Tunable blue-green color emission and energy transfer of Ca2Al3O6F:Ce3+, Tb3+ phosphors for near-UV white LEDs. J. Phys. Chem. C 2012, 116, 15604–15609.

    Article  Google Scholar 

  8. Binnemans, K. Lanthanide-based luminescent hybrid materials. Chem. Rev. 2009, 109, 4283–4374.

    Article  Google Scholar 

  9. Gai, S. L.; Li, C. X.; Yang, P. P.; Lin, J. Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 2014, 114, 2343–2389.

    Article  Google Scholar 

  10. Wang, F.; Tan, W. B.; Zhang, Y.; Fan, X. P.; Wang, M. Q. Luminescent nanomaterials for biological labelling. Nanotechnology 2006, 17, R1.

    Article  Google Scholar 

  11. Blasse, G.; Grabmaier, B. C. Energy transfer. In Luminescent Materials; Springer: Berlin, Heidelberg, 1994; pp 91–107.

    Chapter  Google Scholar 

  12. Nelson, J. A.; Brant, E. L.; Wagner, M. J. Nanocrystalline Y2O3: Eu phosphors prepared by alkalide reduction. Chem. Mater. 2003, 15, 688–693.

    Article  Google Scholar 

  13. Wang, L. M.; Li, X. Y.; Li, Z. Q.; Chu, W. S.; Li, R. F.; Lin, K.; Qian, H. S.; Wang, Y.; Wu, C. F.; Li, J. et al. A new cubic phase for a NaYF4 host matrix offering high upconversion luminescence efficiency. Adv. Mater. 2015, 27, 5528–5533.

    Article  Google Scholar 

  14. Hebbink, G. A.; Stouwdam, J. W.; Reinhoudt, D. N.; van Veggel, F. C. J. M. Lanthanide(III)-doped nanoparticles that emit in the near-infrared. Adv. Mater. 2002, 14, 1147–1150.

    Article  Google Scholar 

  15. Buch, Z.; Kumar, V.; Mamgain, H.; Chawla, S. Silver nanoprism enhanced fluorescence in YVO4:Eu3+ nanoparticles. Chem. Commun. 2013, 49, 9485–9487.

    Article  Google Scholar 

  16. Lupan, O.; Viana, B.; Pauporté, T.; Dhaouadi, M.; Pellé, F.; Devys, L.; Gacoin, T. Controlled mixed violet–blue–red electroluminescence from Eu: Nano-phosphors/ZnO-nanowires/p-gan light-emitting diodes. J. Phys. Chem. C 2013, 117, 26768–26775.

    Article  Google Scholar 

  17. Li, M.; Selvin, P. R. Luminescent polyaminocarboxylate chelates of terbium and europium: The effect of chelate structure. J. Am. Chem. Soc. 1995, 117, 8132–8138.

    Article  Google Scholar 

  18. Yang, D.; Yang, G. X.; Wang, X. M.; Lv, R. C.; Gai, S. L.; He, F.; Gulzar, A.; Yang, P. P. Y2O3:Yb, Er@mSiO2–Cu x S double-shelled hollow spheres for enhanced chemo-/photothermal anti-cancer therapy and dual-modal imaging. Nanoscale 2015, 7, 12180–12191.

    Article  Google Scholar 

  19. Zhang, F.; Braun, G. B.; Shi, Y. F.; Zhang, Y. C.; Sun, X. H.; Reich, N. O.; Zhao, D. Y.; Stucky, G. Fabrication of Ag@SiO2@Y2O3:Er nanostructures for bioimaging: Tuning of the upconversion fluorescence with silver nanoparticles. J. Am. Chem. Soc. 2010, 132, 2850–2851.

    Article  Google Scholar 

  20. Su, J. M.; Wang, G. F.; Li, Y.; Li, R.; Xu, B. Y.; Wang, Y. P.; Zhang, J. S. Synthesis, novel luminescence properties, and surface-enhanced Raman scattering of Au/Y2O3:Eu3+ composite nanotubes. Dalton Trans. 2014, 43, 14720–14725.

    Article  Google Scholar 

  21. O'Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitizedcolloidal TiO2 films. Nature 1991, 353, 737–740.

    Article  Google Scholar 

  22. Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. Dyesensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6, 242–247.

    Article  Google Scholar 

  23. Zhang, Y.; Zhang, B.; Peng, X.; Liu, L.; Dong, S.; Lin, L. P.; Chen, S.; Meng, S. X.; Feng, Y. Q. Preparation of dye-sensitized solar cells with high photocurrent and photovoltage by using mesoporous titanium dioxide particles as photoanode material. Nano Res. 2015, 8, 3830–3841.

    Article  Google Scholar 

  24. Brown, M. D.; Suteewong, T.; Kumar, R. S.; D'Innocenzo, V.; Petrozza, A.; Lee, M. M.; Wiesner, U.; Snaith, H. J. Plasmonic dye-sensitized solar cells using core–shell metal−insulator nanoparticles. Nano Lett. 2011, 11, 438–445.

    Article  Google Scholar 

  25. Wu, W. Q.; Xu, Y. F.; Rao, H. S.; Feng, H. L.; Su, C. Y.; Kuang, D. B. Constructing 3D branched nanowire coated macroporous metal oxide electrodes with homogeneous or heterogeneous compositions for efficient solar cells. Angew. Chem., Int. Ed. 2014, 53, 4816–4821.

    Article  Google Scholar 

  26. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Graetzel, M. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl–, Br–, I–, CN–, and SCN–) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 1993, 115, 6382–6390.

    Article  Google Scholar 

  27. Kim, S.; Lee, J. K.; Kang, S. O.; Ko, J.; Yum, J. H.; Fantacci, S.; De Angelis, F.; Di Censo, D.; Nazeeruddin, M. K.; Gratzel, M. Molecular engineering of organic sensitizers for solar cell applications. J. Am. Chem. Soc. 2006, 128, 16701–16707.

    Article  Google Scholar 

  28. Wang, M. K.; Chamberland, N.; Breau, L.; Moser, J. E.; Humphry-Baker, R.; Marsan, B.; Zakeeruddin, S. M.; Grätzel, M. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat. Chem. 2010, 2, 385–389.

    Article  Google Scholar 

  29. Thapa, A.; Zai, J. T.; Elbonhy, H.; Poudel, P.; Adhikari, N.; Qian, X. F.; Qiao, Q. Q. TiO2 coated urchin-like SnO2 microspheres for efficient dye-sensitized solar cells. Nano Res. 2014, 7, 1154–1163.

    Article  Google Scholar 

  30. Yoo, D.; Kim, J.; Kim, J. H. Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems. Nano Res. 2014, 7, 717–730.

    Article  Google Scholar 

  31. Liang, C. H.; Liu, C. S.; Li, F. B.; Wu, F. The effect of Praseodymium on the adsorption and photocatalytic degradation of azo dye in aqueous Pr3+-TiO2 suspension. Chem. Eng. J. 2009, 147, 219–225.

    Article  Google Scholar 

  32. Shi, J. W.; Zheng, J. T.; Wu, P. Preparation, characterization and photocatalytic activities of holmium-doped titanium dioxide nanoparticles. J. Hazard. Mater. 2009, 161, 416–422.

    Article  Google Scholar 

  33. Smith, W.; Mao, S.; Lu, G. H.; Catlett, A.; Chen, J. H.; Zhao, Y. P. The effect of Ag nanoparticle loading on the photocatalytic activity of TiO2 nanorod arrays. Chem. Phys. Lett. 2010, 485, 171–175.

    Article  Google Scholar 

  34. Fang, X. L.; Li, M. Y.; Guo, K. M.; Zhu, Y. D.; Hu, Z. Q.; Liu, X. L.; Chen, B. L.; Zhao, X. Z. Improved properties of dye-sensitized solar cells by incorporation of graphene into the photoelectrodes. Electrochim. Acta 2012, 65, 174–178.

    Article  Google Scholar 

  35. Xu, F.; Chen, J.; Wu, X.; Zhang, Y.; Wang, Y. X.; Sun, J.; Bi, H. C.; Lei, W.; Ni, Y. R.; Sun, L. T. Graphene scaffolds enhanced photogenerated electron transport in ZnO photoanodes for high-efficiency dye-sensitized solar cells. J. Phys. Chem. C 2013, 117, 8619–8627.

    Article  Google Scholar 

  36. Wang, G. F.; Li, Y.; Jiang, B. J.; Pan, K.; Fan, N. Y.; Feng, Q. M.; Chen, Y. J.; Tian, C. G. In situ synthesis and photoluminescence of Eu3+ doped Y(OH)3@β-NaYF4 core–shell nanotubes. Chem. Commun. 2011, 47, 8019–8021.

    Article  Google Scholar 

  37. Wang, P.; Dai, Q.; Zakeeruddin, S. M.; Forsyth, M.; MacFarlane, D. R.; Grätzel, M. Ambient temperature plastic crystal electrolyte for efficient, all-solid-state dye-sensitized solar cell. J. Am. Chem. Soc. 2004, 126, 13590–13591.

    Article  Google Scholar 

  38. Hagfeldt, A.; Grätzel, M. Molecular photovoltaics. Acc. Chem. Res. 2000, 33, 269–277.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofeng Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Su, J., Wang, G. et al. Pt/Y2O3:Eu3+ composite nanotubes: Enhanced photoluminescence and application in dye-sensitized solar cells. Nano Res. 9, 2338–2346 (2016). https://doi.org/10.1007/s12274-016-1120-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1120-z

Keywords

Navigation