Skip to main content
Log in

Vertical α-FeOOH nanowires grown on the carbon fiber paper as a free-standing electrode for sensitive H2O2 detection

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Highly sensitive, selective, and stable hydrogen peroxide (H2O2) detection using nanozyme-based catalysts are desirable for practical applications. Herein, vertical α-FeOOH nanowires were successfully grown on the surface of carbon fiber paper (CFP) via a low-temperature hydrothermal procedure. The formation of vertical α-FeOOH nanowires is ascribed to the structure-directing role of sodium dodecyl sulfate. The resulting free-standing electrode with one-dimensional (1D) nanowires offers oriented channels for fast charge transfer, excellent electrical contact between the electrocatalyst and the current collector, and good mechanical stability and reproducibility. Thus, it can serve as an efficient electrocatalyst for the reduction and sensitive detection of H2O2. The relation of the oxidation current of H2O2 with the concentration is linear from 0.05 to 0.5 mM with a sensitivity of −0.194 mA/(mM·cm2) and a low detection limit of 18 μM. Furthermore, the portability in the geometric tailor and easy device fabrication allow extending the general applicability of this free-standing electrode to chemical and biological sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karakoti, A.; Singh, S.; Dowding, J. M.; Seal, S.; Self, W. T. Redox-active radical scavenging nanomaterials. Chem. Soc. Rev. 2010, 39, 4422–4432.

    Article  Google Scholar 

  2. Jirkovsky, J. S.; Panas, I.; Ahlberg, E.; Halasa, M.; Romani, S.; Schiffrin, D. J. Single atom hot-spots at Au–Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 2011, 133, 19432–19441.

    Article  Google Scholar 

  3. Kim, M. I.; Ye, Y.; Won, B. Y.; Shin, S.; Lee, J.; Park, H. G. A highly efficient electrochemical biosensing platform by employing conductive nanocomposite entrapping magnetic nanoparticles and oxidase in mesoporous carbon foam. Adv. Funct. Mater. 2011, 21, 2868–2875.

    Article  Google Scholar 

  4. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    Article  Google Scholar 

  5. Wu, J. B.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857.

    Article  Google Scholar 

  6. Chen, Z. W.; Higgins, D.; Yu, A. P.; Zhang, L.; Zhang, J. J. A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 2011, 4, 3167–3192.

    Article  Google Scholar 

  7. Chen, W.; Cai, S.; Ren, Q. Q.; Wen, W.; Zhao, Y. D. Recent advances in electrochemical sensing for hydrogen peroxide: A review. Analyst 2012, 137, 49–58.

    Article  Google Scholar 

  8. Chen, X.; Zhang, J. J.; Xuan, J.; Zhu, J. J. Myoglobin/gold nanoparticles/carbon spheres 3-D architecture for the fabrication of a novel biosensor. Nano Res. 2009, 2, 210–219.

    Article  Google Scholar 

  9. Rhee, S. G.; Chang, T. S.; Jeong, W. J.; Kang, D.; Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Mol. Cells 2010, 29, 539–549.

    Article  Google Scholar 

  10. Wei, D.; Bailey, M. J. A.; Andrew, P.; Ryhänen, T. Electrochemical biosensors at the nanoscale. Lab Chip. 2009, 9, 2123–2131.

    Article  Google Scholar 

  11. Mu, J. S.; Wang, Y.; Zhao, M.; Zhang, L. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem. Commun. 2012, 48, 2540–2542.

    Article  Google Scholar 

  12. Yagati, A. K.; Choi, J. W. Protein based electrochemical biosensors for H2O2 detection towards clinical diagnostics. Electroanalysis 2014, 26, 1259–1276.

    Article  Google Scholar 

  13. Heli, H.; Pishahang, J. Cobalt oxide nanoparticles anchored to multiwalled carbon nanotubes: Synthesis and application for enhanced electrocatalytic reaction and highly sensitive nonenzymatic detection of hydrogen peroxide. Electrochim. Acta 2014, 123, 518–526.

    Article  Google Scholar 

  14. Chen, S. H.; Yuan, R.; Chai, Y. Q.; Hu, F. X. Electrochemical sensing of hydrogen peroxide using metal nanoparticles: A review. Microchim. Acta 2013, 180, 15–32.

    Article  Google Scholar 

  15. Chen, A. C.; Chatterjee, S. Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 2013, 42, 5425–5438.

    Article  Google Scholar 

  16. Wang, J.; Chen, X. J.; Liao, K. M.; Wang, G. H.; Han, M. Pd nanoparticle-modified electrodes for nonenzymatic hydrogen peroxide detection. Nanoscale Res. Lett. 2015, 10, 311.

    Article  Google Scholar 

  17. Aiyar, J.; Berkovits, H. J.; Floyd, R. A.; Wetterhahn, K. E. Reaction of chromium(VI) with hydrogen peroxide in the presence of glutathione: Reactive intermediates and resulting DNA damage. Chem. Res. Toxicol. 1990, 3, 595–603.

    Article  Google Scholar 

  18. Jans, H.; Huo, Q. Gold nanoparticle-enabled biological and chemical detection and analysis. Chem. Soc. Rev. 2012, 41, 2849–2866.

    Article  Google Scholar 

  19. Manea, F.; Houillon, F. B.; Pasquato. L.; Scrimin, P. Nanozymes: Gold-nanoparticle-based transphosphorylation catalysts. Angew. Chem., Int. Ed. 2004, 43, 6165–6169.

    Article  Google Scholar 

  20. Comotti, M.; Della Pina, C.; Matarrese, R.; Rossi, M. The catalytic activity of “naked” gold particles. Angew. Chem., Int. Ed. 2004, 43, 5812–5815.

    Article  Google Scholar 

  21. Cui, C. H.; Yu, J. W.; Li, H. H.; Gao, M. R.; Liang, H. W.; Yu, S. H. Remarkable enhancement of electrocatalytic activity by tuning the interface of Pd–Au bimetallic nanoparticle tubes. ACS Nano 2011, 5, 4211–4218.

    Article  Google Scholar 

  22. Sun, X. L.; Guo, S. J.; Liu, Y.; Sun, S. H. Dumbbell-like PtPd–Fe3O4 nanoparticles for enhanced electrochemical detection of H2O2. Nano Lett. 2012, 12, 4859–4863.

    Article  Google Scholar 

  23. Liu, J.; Zhang, W.; Zhang, H. L.; Yang, Z. Y.; Li, T. R.; Wang, B. D.; Huo, X.; Wang, R.; Chen, H. T. A multifunctional nanoprobe based on Au–Fe3O4 nanoparticles for multimodal and ultrasensitive detection of cancer cells. Chem. Commun. 2013, 49, 4938–4940.

    Article  Google Scholar 

  24. Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

    Article  Google Scholar 

  25. Shi, Y.; Su, P.; Wang, Y. Y.; Yang, Y. Fe3O4 peroxidase mimetics as a general strategy for the fluorescent detection of H2O2-involved systems. Talanta 2014, 130, 259–264.

    Article  Google Scholar 

  26. Guo, Y. J.; Deng, L.; Li, J.; Guo, S. J.; Wang, E. K.; Dong, S. J. Hemin–graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano 2011, 5, 1282–1290.

    Article  Google Scholar 

  27. Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

    Article  Google Scholar 

  28. Zhang, C. M.; Zhu, J. X; Rui, X. H.; Chen, J.; Sim, D.; Shi, W. H.; Hng, H. H.; Lim, T. M.; Yan, Q. Y. Synthesis of hexagonal-symmetry α-iron oxyhydroxide crystals using reduced graphene oxide as a surfactant and their Li storage properties. CrystEngComm 2012, 14, 147–153.

    Article  Google Scholar 

  29. Perez, J. M. Iron oxide nanoparticles: Hidden talent. Nat. Nanotechnol. 2007, 2, 535–536.

    Article  Google Scholar 

  30. Chen, P. Z.; Xu, K.; Li, X. L.; Guo, Y. Q.; Zhou, D.; Zhao, J. Y.; Wu, X. J.; Wu, C. Z; Xie, Y. Ultrathin nanosheets of feroxyhyte: A new two-dimensional material with robust ferromagnetic behavior. Chem. Sci. 2014, 5, 2251–2255.

    Article  Google Scholar 

  31. Yang, T. Y.; Kang, H. Y.; Jin, K.; Park, S.; Lee, J.; Sim, U.; Jeong, H. Y.; Joo, Y. C.; Nam, K. T. An iron oxide photoanode with hierarchical nanostructure for efficient water oxidation. J. Mater. Chem. A 2014, 2, 2297–2305.

    Article  Google Scholar 

  32. Zhang, J.; Gao, W. B.; Dou, M. L.; Wang, F.; Liu, J. Q.; Li, Z. L.; Ji, J. Nanorod–constructed porous Co3O4 nanowires: Highly sensitive sensors for the detection of hydrazine. Analyst 2015, 140, 1686–1692.

    Article  Google Scholar 

  33. Xie, J. L.; Guo, C. X.; Li, C. M. Construction of onedimensional nanostructures on graphene for efficient energy conversion and storage. Energy Environ. Sci. 2014, 7, 2559–2579.

    Article  Google Scholar 

  34. Wang, L.; Su, L.; Chen, H. H.; Yin, T.; Lin, Z. Y.; Lin, X. X.; Yuan, C. W.; Fu, D. G. Carbon paper electrode modified by goethite nanowhiskers promotes bacterial extracellular electron transfer. Mater. Lett. 2015, 141, 311–314.

    Article  Google Scholar 

  35. Kong, L. J.; Ren, Z. Y.; Zheng, N. N.; Du, S. C.; Wu, J.; Tang, J. L.; Fu, H. G. Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection. Nano Res. 2015, 8, 469–480.

    Article  Google Scholar 

  36. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

    Article  Google Scholar 

  37. Valentini, F.; Cristofanelli, L.; Carbone M.; Palleschi, G. Glassy carbon electrodes modified with hemin-carbon nanomaterial films for amperometric H2O2 and NO2–detection. Electrochimi. Acta 2012, 63, 37–46.

    Article  Google Scholar 

  38. Zhang, L. H.; Zhai, Y. M.; Gao, N.; Wen, D.; Dong, S. J. Sensing H2O2 with layer-by-layer assembled Fe3O4–PDDA nanocomposite film. Electrochem. Commun. 2008, 10, 1524–1526.

    Article  Google Scholar 

  39. Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166–5180.

    Article  Google Scholar 

  40. Li, S. S.; Cong, H.-P.; Wang, P.; Yu, S. H. Flexible nitrogen-doped graphene/carbon nanotube/Co3O4 paper and its oxygen reduction activity. Nanoscale 2014, 6, 7534–7541.

    Article  Google Scholar 

  41. Liu, M. M.; He, S. J.; Chen, W. Co3O4 nanowires supported on 3D N-doped carbon foam as an electrochemical sensing platform for efficient H2O2 detection. Nanoscale 2014, 6, 11769–11776.

    Article  Google Scholar 

  42. Louie, W. M.; Bell, A. T. An Investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337.

    Article  Google Scholar 

  43. Froment, F.; Tourné, A.; Colomban, P. Raman identification of natural red to yellow pigments: Ochre and iron-containing ores. J. Raman Spectrosc. 2008, 39, 560–568.

    Article  Google Scholar 

  44. Masa, J.; Xia, W.; Sinev, I.; Zhao, A. Q.; Sun, Z. Y.; Grützke, S.; Weide, P.; Muhler, M.; Schuhmann, W. MnxOy/NC and CoxOy/NC nanoparticles embedded in a nitrogen-doped carbon matrix for high-performance bifunctional oxygen electrodes. Angew. Chem., Int. Ed. 2014, 53, 8508–8512.

    Article  Google Scholar 

  45. Shao, M. F.; Ning, F. Y.; Zhao, J. W.; Wei, M.; Evans, D. G.; Duan, X. Hierarchical layered double hydroxide microspheres with largely enhanced performance for ethanol electrooxidation. Adv. Funct. Mater. 2013, 23, 3513–3518.

    Article  Google Scholar 

  46. Kannan, P.; Maiyalagan, T.; Marsili, E.; Ghosh, S.; Niedziolka-Jönsson, J.; Jönsson-Niedziolka, M. Hierarchical 3-dimensional nickel-iron nanosheet arrays on carbon fiber paper as a novel electrode for non-enzymatic glucose sensing. Nanoscale 2016, 8, 843–855.

    Article  Google Scholar 

  47. Lin, C. Y.; Chang, C. T. Iron oxide nanorods array in electrochemical detection of H2O2. Sens. Actuators B 2015, 220, 695–704.

    Article  Google Scholar 

  48. Hrbac, J.; Halouzka, V.; Zboril, R.; Papadopoulos, K.; Triantis, T. Carbon electrodes modified by nanoscopic iron(III) oxides to assemble chemical sensors for the hydrogen peroxide amperometric detection. Electroanalysis 2007, 19, 1850–1854.

    Article  Google Scholar 

  49. Dutta, A. K.; Maji, S. K.; Srivastava, D. N.; Mondal, A.; Biswas, P.; Paul, P.; Adhikary, B. Peroxidase-like activity and amperometric sensing of hydrogen peroxide by Fe2O3 and Prussian Blue-modified Fe2O3 nanoparticles. J. Mol. Catal. A: Chem. 2012, 360, 71–77.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyu Ren or Honggang Fu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, S., Ren, Z., Wu, J. et al. Vertical α-FeOOH nanowires grown on the carbon fiber paper as a free-standing electrode for sensitive H2O2 detection. Nano Res. 9, 2260–2269 (2016). https://doi.org/10.1007/s12274-016-1113-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1113-y

Keywords

Navigation