Skip to main content
Log in

Shedding light on electrodeposition dynamics tracked in situ via soft X-ray coherent diffraction imaging

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The in situ physicochemical analysis of nanostructured functional materials is crucial for advances in their design and production. X-ray coherent diffraction imaging (CDI) methods have recently demonstrated impressive potential for characterizing such materials with a high spatial resolution and elemental sensitivity; however, moving from the current ex situ static regime to the in situ dynamic one remains a challenge. By combining soft X-ray ptychography and single-shot keyhole CDI, we performed the first in situ spatiotemporal study on an electrodeposition process in a sealed wet environment, employed for the fabrication of oxygen-reduction catalysts, which are key components for alkaline fuel cells and metal-air batteries. The results provide the first experimental demonstration of theoretically predicted Turing–Hopf electrochemical pattern formation resulting from morphochemical coupling, adding a new dimension for the in-depth in situ characterization of electrodeposition processes in space and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Guay, D.; Stewart-Ornstein, J.; Zhang, X. R.; Hitchcock, A. P. In situ spatial and time-resolved studies of electrochemical reactions by scanning transmission X-ray microscopy. Anal. Chem. 2005, 77, 3479–3487.

    Article  Google Scholar 

  2. Hitchcock, A. P.; Toney, M. F. Spectromicroscopy and coherent diffraction imaging: Focus on energy materials applications. J. Synchrotron Radiat. 2014, 21, 1019–1030.

    Article  Google Scholar 

  3. Holt, M.; Harder, R.; Winarski, R.; Rose, V. Nanoscale hard X-ray microscopy methods for materials studies. Annu. Rev. Mater. Res. 2013, 43, 183–211.

    Article  Google Scholar 

  4. Zhong, J.; Zhang, H.; Sun, X. H.; Lee, S.-T. Synchrotron soft X-ray absorption spectroscopy study of carbon and silicon nanostructures for energy applications. Adv. Mater. 2014, 26, 7786–7806.

    Article  Google Scholar 

  5. Gianoncelli, A.; Sgura, I.; Bocchetta, P.; Lacitignola, D.; Bozzini, B. High-lateral resolution X-ray fluorescence microspectroscopy and dynamic mathematical modelling as tools for the study of electrodeposited electrocatalysts. X-Ray Spectrom. 2015, 44, 263–275.

    Article  Google Scholar 

  6. Lacitignola, D.; Bozzini, B.; Sgura, I. Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay. Eur. J. Appl. Math. 2015, 26, 143–173.

    Article  Google Scholar 

  7. Rodenburg, J. M.; Hurst, A. C.; Cullis, A. G.; Dobson, B. R.; Pfeiffer, F.; Bunk, O.; David, C.; Jefimovs, K.; Johnson, I. Hard-X-ray lensless imaging of extended objects. Phys. Rev. Lett. 2007, 98, 034801.

    Article  Google Scholar 

  8. Abbey, B.; Nugent, K. A.; Williams, G. J.; Clark, J. N.; Peele, A. G.; Pfeifer, M. A.; de Jonge, M.; McNulty, I. Keyhole coherent diffractive imaging. Nat. Phys. 2008, 4, 394–398.

    Article  Google Scholar 

  9. Shapiro, D. A.; Yu, Y.-S.; Tyliszczak, T.; Cabana, J.; Celestre, R.; Chao, W. L.; Kaznatcheev, K.; Kilcoyne, A. L. D.; Maia, F.; Marchesini, S. et al. Chemical composition mapping with nanometre resolution by soft X-ray microscopy. Nat. Photonics 2014, 8, 765–769.

    Article  Google Scholar 

  10. Thibault, P.; Dierolf, M.; Menzel, A.; Bunk, O.; David, C.; Pfeiffer, F. High-resolution scanning X-ray diffraction microscopy. Science 2008, 321, 379–382.

    Article  Google Scholar 

  11. Thibault, P.; Menzel, A. Reconstructing state mixtures from diffraction measurements. Nature 2013, 494, 68–71.

    Article  Google Scholar 

  12. Giewekemeyer, K.; Beckers, M.; Gorniak, T.; Grunze, M.; Salditt, T.; Rosenhahn, A. Ptychographic coherent X-ray diffractive imaging in the water window. Opt. Express 2011, 19, 1037–1050.

    Article  Google Scholar 

  13. Giewekemeyer, K.; Thibault, P.; Kalbfleisch, S.; Beerlink, A.; Kewish, C. M.; Dierolf, M.; Pfeiffer, F.; Salditt, T. Quantitative biological imaging by ptychographic X-ray diffraction microscopy. Proc. Natl. Acad. Sci. USA 2010, 107, 529–534.

    Article  Google Scholar 

  14. Hitchcock, A. P. Soft X-ray spectromicroscopy and ptychography. J. Electron Spectrosc. Relat. Phenom. 2015, 200, 49–63.

    Article  Google Scholar 

  15. Thibault, P.; Guizar-Sicairos, M.; Menzel, A. Coherent imaging at the diffraction limit. J. Synchrotron Radiat. 2014, 21, 1011–1018.

    Article  Google Scholar 

  16. Schropp, A.; Hoppe, R.; Patommel, J.; Samberg, D.; Seiboth, F.; Stephan, S.; Wellenreuther, G.; Falkenberg, G.; Schroer, C. G. Hard X-ray scanning microscopy with coherent radiation: Beyond the resolution of conventional X-ray microscopes. Appl. Phys. Lett. 2012, 100, 253112.

    Article  Google Scholar 

  17. Clark, J. N.; Huang, X. J.; Harder, R. J.; Robinson, I. K. Dynamic imaging using ptychography. Phys. Rev. Lett. 2014, 112, 113901.

    Article  Google Scholar 

  18. Zhang, B. S.; Seaberg, M. D.; Adams, D. E.; Gardner, D. F.; Shanblatt, E. R.; Shaw, J. M.; Chao, W. L.; Gullikson, E. M.; Salmassi, F.; Kapteyn, H. C. et al. Full field tabletop EUV coherent diffractive imaging in a transmission geometry. Opt. Express 2013, 21, 21970–21980.

    Article  Google Scholar 

  19. Dierolf, M.; Menzel, A.; Thibault, P.; Schneider, P.; Kewish, C. M.; Wepf, R.; Bunk, O.; Pfeiffer, F. Ptychographic X-ray computed tomography at the nanoscale. Nature 2010, 467, 436–439.

    Article  Google Scholar 

  20. Jones, M. W. M.; Abbey, B.; Gianoncelli, A.; Balaur, E.; Millet, C.; Luu, M. B.; Coughlan, H. D.; Carroll, A. J.; Peele, A. G.; Tilley, L. et al. Phase-diverse Fresnel coherent diffractive imaging of malaria parasite-infected red blood cells in the water window. Opt. Express 2013, 21, 32151–32159.

    Article  Google Scholar 

  21. Maiden, A. M.; Morrison, G. R.; Kaulich, B.; Gianoncelli, A.; Rodenburg, J. M. Soft X-ray spectromicroscopy using ptychography with randomly phased illumination. Nat. Commun. 2013, 4, 1669.

    Article  Google Scholar 

  22. Beckers, M.; Senkbeil, T.; Gorniak, T.; Reese, M.; Giewekemeyer, K.; Gleber, S.-C.; Salditt, T.; Rosenhahn, A. Chemical contrast in soft X-ray ptychography. Phys. Rev. Lett. 2011, 107, 208101.

    Article  Google Scholar 

  23. Hoppe, R.; Reinhardt, J.; Hofmann, G.; Patommel, J.; Grunwaldt, J.-D.; Damsgaard, C. D.; Wellenreuther, G.; Falkenberg, G.; Schroer, C. G. High-resolution chemical imaging of gold nanoparticles using hard X-ray ptychography. Appl. Phys. Lett. 2013, 102, 203104.

    Article  Google Scholar 

  24. Takahashi, Y.; Suzuki, A.; Zettsu, N.; Kohmura, Y.; Yamauchi, K.; Ishikawa, T. Multiscale element mapping of buried structures by ptychographic X-ray diffraction microscopy using anomalous scattering. Appl. Phys. Lett. 2011, 99, 131905.

    Article  Google Scholar 

  25. Meirer, F.; Cabana, J.; Liu, Y. J.; Mehta, A.; Andrews, J. C.; Pianetta, P. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy. J. Synchrotron Radiat. 2011, 18, 773–781.

    Article  Google Scholar 

  26. Bozzini, B.; Bocchetta, P.; Gianoncelli, A.; Mele, C.; Kiskinova, M. Electrodeposition and ageing of Mn-based binary composite oxygen reduction reaction electrocatalysts. ChemElectroChem 2015, 2, 1541–1550.

    Article  Google Scholar 

  27. Bozzini, B.; Bocchetta, P.; Gianoncelli, A.; Kourousias, G.; Kiskinova, M.; Zilio, S. In situ soft X-ray fluorescence and absorption microspectroscopy: A study of Mn-Co/polypyrrole electrodeposition. J. Vac. Sci. Technol. A 2015, 33, 031102.

    Article  Google Scholar 

  28. van Riessen, G. A.; Junker, M.; Phillips, N. W.; Peele, A. G. A soft X-ray beamline for quantitative nanotomography using ptychography. In Proceedings of the SPIE 8851, X-Ray Nanoimaging: Instruments and Methods, San Diego, California, USA, 2013.

    Google Scholar 

  29. Jones, M. W. M.; Dearnley, M. K.; van Riessen, G. A.; Abbey, B.; Putkunz, C. T.; Junker, M. D.; Vine, D. J.; McNulty, I.; Nugent, K. A.; Peele, A. G. et al. Rapid, low dose X-ray diffractive imaging of the malaria parasite Plasmodium falciparum. Ultramicroscopy 2014, 143, 88–92.

    Article  Google Scholar 

  30. Bozzini, B.; Gianoncelli, A.; Bocchetta, P.; Dal Zilio, S.; Kourousias, G. Fabrication of a sealed electrochemical microcell for in situ soft X-ray microspectroscopy and testing with in situ Co-polypyrrole composite electrodeposition for Pt-free oxygen electrocatalysis. Anal. Chem. 2014, 86, 664–670.

    Article  Google Scholar 

  31. Davidson, N.; Abbey, B.; Quiney, H. M.; Julius, T. D.; Allman, B.; Jones, M. W. M.; Putkunz, C. T.; Torrance, A.; Wittler, H.; Carroll, A. et al. NADIA Software Project; ARC Centre of Excellence for Coherent X-ray Science, 2011. http://www.coecxs.org/joomla/index.php/research-andprojects/ nadia-software-project.html (accessed Feb 10, 2016).

    Google Scholar 

  32. Henke, B. L.; Gullikson, E. M.; Davis, J. C. X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. At. Data Nucl. Data Tables 1993, 54, 181–342.

    Article  Google Scholar 

  33. Popov, K.; Grgur, B.; Djokic, S. S. Fundamental Aspects of Electrometallurgy; Springer: New York, 2002.

    Google Scholar 

  34. Bocchetta, P.; Amati, M.; Bozzini, B.; Catalano, M.; Gianoncelli, A.; Gregoratti, L.; Taurino, A.; Kiskinova, M. Quasi-in-situ single-grain photoelectron microspectroscopy of Co/PPy nanocomposites under oxygen reduction reaction. ACS Appl. Mater. Interfaces 2014, 6, 19621–19629.

    Article  Google Scholar 

  35. Bocchetta, P.; Amati, M.; Gregoratti, L.; Kiskinova, M.; Sezen, H.; Taurino, A.; Bozzini, B. Morphochemical evolution during ageing of pyrolysed Mn/polypyrrole nanocomposite oxygen reduction electrocatalysts: A study based on quasi-in situ photoelectron spectromicroscopy. J. Electroanal. Chem. 2015, 758, 191–200.

    Article  Google Scholar 

  36. Sgura, I.; Bozzini, B.; Lacitignola, D. Numerical approximation of Turing patterns in electrodeposition by ADI methods. J. Comput. Appl. Math. 2012, 236, 4132–4147.

    Article  Google Scholar 

  37. Gianoncelli, A.; Vaccari, L.; Kourousias, G.; Cassese, D.; Bedolla, D. E.; Kenig, S.; Storici, P.; Lazzarino, M.; Kiskinova, M. Soft X-ray microscopy radiation damage on fixed cells investigated with synchrotron radiation FTIR microscopy. Sci. Rep. 2015, 5, 10250.

    Article  Google Scholar 

  38. Bacquart, T.; Devès, G.; Carmona, A.; Tucoulou, R.; Bohic, S.; Ortega, R. Subcellular speciation analysis of trace element oxidation states using synchrotron radiation micro-X-ray absorption near-edge structure. Anal. Chem. 2007, 79, 7353–7359.

    Article  Google Scholar 

  39. Kijewska, K.; Blanchard, G. J.; Szlachetko, J.; Stolarski, J.; Kisiel, A.; Michalska, A.; Maksymiuk, K.; Pisarek, M.; Majewski, P.; Krysinski, P. et al. Photopolymerized polypyrrole microvessels. Chemistry 2012, 18, 310–320.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Kourousias.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kourousias, G., Bozzini, B., Gianoncelli, A. et al. Shedding light on electrodeposition dynamics tracked in situ via soft X-ray coherent diffraction imaging. Nano Res. 9, 2046–2056 (2016). https://doi.org/10.1007/s12274-016-1095-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1095-9

Keywords

Navigation