Skip to main content
Log in

Multicomponent platinum-free nanoporous Pd-based alloy as an active and methanol-tolerant electrocatalyst for the oxygen reduction reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Development of high-performance oxygen reduction reaction (ORR) catalysts is crucial to improve proton exchange membrane fuel cells. Herein, a multicomponent nanoporous PdCuTiAl (np-PdCuTiAl) electrocatalyst has been synthesized by a facile one-step dealloying strategy. The np-PdCuTiAl catalyst exhibits a three-dimensional bicontinuous interpenetrating ligament/channel structure with an ultrafine length scale of ~3.7 nm. The half-wave potential of np PdCuTiAl is 0.873 V vs. RHE, more positive than those of PdC (0.756 V vs. RHE) and PtC (0.864 V vs. RHE) catalysts. The np-PdCuTiAl alloy shows a 4-electron reaction pathway with similar Tafel slopes to PtC. Remarkably, the half-wave potential shows a negative shift of only 12 mV for np-PdCuTiAl in the presence of methanol, and this negative shift is much lower than those of the PdC (50 mV) and PtC (165 mV) catalysts. The enhanced ORR activity of np-PdCuTiAl has been further rationalized through density functional theory calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carrette, L.; Friedrich, K. A.; Stimming, U. Fuel cells—Fundamentals and applications. Fuel Cells 2001, 1, 5–39.

    Article  Google Scholar 

  2. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.

    Article  Google Scholar 

  3. Blomen, L. J. M. J.; Mugerwa, M. N. Fuel Cell Systems; Springer Science & Business Media: New York, 1993.

    Book  Google Scholar 

  4. Zhang, G. Q.; Xia, B. Y.; Wang, X.; Lou, X. W. Strongly coupled NiCo2O4-rGO hybrid nanosheets as a methanoltolerant electrocatalyst for the oxygen reduction reaction. Adv. Mater. 2014, 26, 2408–2412.

    Article  Google Scholar 

  5. Kamarudin, S. K.; Achmad, F.; Daud, W. R. W. Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. Int. J. Hydrogen Energ. 2009, 34, 6902–6916.

    Article  Google Scholar 

  6. Wang, Z.-B.; Zhao, C.-R.; Shi, P.-F.; Yang, Y.-S.; Yu, Z.-B.; Wang, W.-K.; Yin, G.-P. Effect of a carbon support containing large mesopores on the performance of a Pt-Ru-Ni/C catalyst for direct methanol fuel cells. J. Phys. Chem. C 2010, 114, 672–677.

    Article  Google Scholar 

  7. Tiwari, J. N.; Tiwari, R. N.; Singh, G.; Kim, K. S. Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energ. 2013, 2, 553–578.

    Article  Google Scholar 

  8. Mathiyarasu, J.; Phani, K. L. N. Carbon-supported palladiumcobalt-noble metal (Au, Ag, Pt) nanocatalysts as methanol tolerant oxygen-reduction cathode materials in DMFCs. J. Electrochem. Soc. 2007, 154, B1100–B1105.

    Article  Google Scholar 

  9. Ren, X. M.; Wilson, M. S.; Gottesfeld, S. High performance direct methanol polymer electrolyte fuel cells. J. Electrochem. Soc. 1996, 143, L12–L15.

    Article  Google Scholar 

  10. Ruban, A. V.; Skriver, H. L.; Nørskov, J. K. Surface segregation energies in transition-metal alloys. Phys. Rev. B 1999, 59, 15990–16000.

    Article  Google Scholar 

  11. Fernández, J. L.; Raghuveer, V.; Manthiram, A.; Bard, A. J. Pd-Ti and Pd-Co-Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells. J. Am. Chem. Soc. 2005, 127, 13100–13101.

    Article  Google Scholar 

  12. Yang, J.; Tian, C. G.; Wang, L.; Fu, H. G. An effective strategy for small-sized and highly-dispersed palladium nanoparticles supported on graphene with excellent performance for formic acid oxidation. J. Mater. Chem. 2011, 21, 3384–3390.

    Article  Google Scholar 

  13. Yang, R. Z.; Bian, W. Y.; Strasser, P.; Toney, M. F. Dealloyed PdCu3 thin film electrocatalysts for oxygen reduction reaction. J. Power Sources 2013, 222, 169–176.

    Article  Google Scholar 

  14. Shao, M. H.; Huang, T.; Liu, P.; Zhang, J.; Sasaki, K.; Vukmirovic, M. B.; Adzic, R. R. Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction. Langmuir 2006, 22, 10409–10415.

    Article  Google Scholar 

  15. Liu, H.; Manthiram, A. Controlled synthesis and characterization of carbon-supported Pd4Co nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells. Energy Environ. Sci. 2009, 2, 124–132.

    Article  Google Scholar 

  16. Liu, L. C.; Samjeske, G.; Nagamatsu, S.-I.; Sekizawa, O.; Nagasawa, K.; Takao, S.; Imaizumi, Y.; Yamamoto, T.; Uruga, T.; Iwasawa, Y. Dependences of the oxygen reduction reaction activity of Pd-Co/C and Pd-Ni/C alloy electrocatalysts on the nanoparticle size and lattice constant. Top. Catal. 2014, 57, 595–606.

    Article  Google Scholar 

  17. Shao, M. H.; Liu, P.; Zhang, J. L.; Adzic, R. Origin of enhanced activity in palladium alloy electrocatalysts for oxygen reduction reaction. J. Phys. Chem. B 2007, 111, 6772–6775.

    Article  Google Scholar 

  18. Song, S. Q.; Wang, Y.; Tsiakaras, P.; Shen, P. K. Direct alcohol fuel cells: A novel non-platinum and alcohol inert ORR electrocatalyst. Appl. Catal. B 2008, 78, 381–387.

    Article  Google Scholar 

  19. Tarasevich, M. R.; Zhutaeva, G. V.; Bogdanovskaya, V. A.; Radina, M. V.; Ehrenburg, M. R.; Chalykh, A. E. Oxygen kinetics and mechanism at electrocatalysts on the base of palladium-iron system. Electrochim. Acta 2007, 52, 5108–5118.

    Article  Google Scholar 

  20. Zhang, Z. H.; Zhang, C.; Sun, J. Z.; Kou, T. Y.; Bai, Q. G.; Wang, Y.; Ding, Y. Ultrafine nanoporous PdFe/Fe3O4 catalysts with doubly enhanced activities towards electro-oxidation of methanol and ethanol in alkaline media. J. Mater. Chem. A 2013, 1, 3620–3628.

    Article  Google Scholar 

  21. Shao, M.-H.; Sasaki, K.; Adzic, R. R. Pd-Fe nanoparticles as electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 2006, 128, 3526–3527.

    Article  Google Scholar 

  22. Zhu, F. C.; Ma, G. S.; Bai, Z. C.; Hang, R. Q.; Tang, B.; Zhang, Z. H.; Wang, X. G. High activity of carbon nanotubes supported binary and ternary Pd-based catalysts for methanol, ethanol and formic acid electro-oxidation. J. Power Sources 2013, 242, 610–620.

    Article  Google Scholar 

  23. Shao, M. H.; Smith, B. H.; Guerrero, S.; Protsailo, L.; Su, D.; Kaneko, K.; Odell, J. H.; Humbert, M. P.; Sasaki, K.; Marzullo, J. et al. Core–shell catalysts consisting of nanoporous cores for oxygen reduction reaction. Phys. Chem. Chem. Phys. 2013, 15, 15078–15090.

    Article  Google Scholar 

  24. Lee, K.; Savadogo, O.; Ishihara, A.; Mitsushima, S.; Kamiya, N.; Ota, K.-I. Methanol-tolerant oxygen reduction electrocatalysts based on Pd-3D transition metal alloys for direct methanol fuel cells. J. Electrochem. Soc. 2006, 153, A20–A24.

    Article  Google Scholar 

  25. Snyder, J.; Fujita, T.; Chen, M. W.; Erlebacher, J. Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts. Nat. Mater. 2010, 9, 904–907.

    Article  Google Scholar 

  26. Liu, Y. Q.; Xu, C. X. Nanoporous PdTi alloys as nonplatinum oxygen-reduction reaction electrocatalysts with enhanced activity and durability. ChemSusChem 2013, 6, 78–84.

    Article  Google Scholar 

  27. Mohanraju, K.; Cindrella, L. Impact of alloying and lattice strain on ORR activity of Pt and Pd based ternary alloys with Fe and Co for proton exchange membrane fuel cell applications. RSC Adv. 2014, 4, 11939–11947.

    Article  Google Scholar 

  28. Raghuveer, V.; Manthiram, A.; Bard, A. J. Pd-Co-Mo electrocatalyst for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Phys. Chem. B 2005, 109, 22909–22912.

    Article  Google Scholar 

  29. Zhang, H.; Hao, Q.; Geng, H. R.; Xu, C. X. Nanoporous PdCu alloys as highly active and methanol-tolerant oxygen reduction electrocatalysts. Int. J. Hydrogen Energ. 2013, 38, 10029–10038.

    Article  Google Scholar 

  30. Xu, C. X.; Liu, Y. Q.; Hao, Q.; Duan, H. M. Nanoporous PdNi alloys as highly active and methanol-tolerant electrocatalysts towards oxygen reduction reaction. J. Mater. Chem. A 2013, 1, 13542–13548.

    Article  Google Scholar 

  31. Li, Z. S.; Ji, S.; Pollet, B. G.; Shen, P. K. A Co3W3C promoted Pd catalyst exhibiting competitive performance over Pt/C catalysts towards the oxygen reduction reaction. Chem. Commun. 2014, 50, 566–568.

    Article  Google Scholar 

  32. Mittermeier, T.; Weiß, A.; Hasché, F.; Gasteiger, H. A. Activity, stability and degradation of carbon supported palladium (Pd/C) fuel cell electrocatalysts for the oxygen reduction. ECS Trans. 2015, 69, 303–313.

    Article  Google Scholar 

  33. Dong, H.-Q.; Chen, Y.-Y.; Han, M.; Li, S.-L.; Zhang, J.; Li, J.-S.; Lan, Y.-Q.; Dai, Z.-H.; Bao, J.-C. Synergistic effect of mesoporous Mn2O3-supported Pd nanoparticle catalysts for electrocatalytic oxygen reduction reaction with enhanced performance in alkaline medium. J. Mater. Chem. A 2014, 2, 1272–1276.

    Article  Google Scholar 

  34. Wang, X. G.; Frenzel, J.; Wang, W. M.; Ji, H.; Qi, Z.; Zhang, Z. H.; Eggeler, G. Length-scale modulated and electrocatalytic activity enhanced nanoporous gold by doping. J. Phys. Chem. C 2011, 115, 4456–4465.

    Article  Google Scholar 

  35. Qian, L. H.; Chen, M. W. Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation. Appl. Phys. Lett. 2007, 91, 083105.

    Article  Google Scholar 

  36. Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450–453.

    Article  Google Scholar 

  37. Qi, Z.; Geng, H. R.; Wang, X. G.; Zhao, C. C.; Ji, H.; Zhang, C.; Xu, J. L.; Zhang, Z. H. Novel nanocrystalline PdNi alloy catalyst for methanol and ethanol electro-oxidation in alkaline media. J. Power Sources 2011, 196, 5823–5828.

    Article  Google Scholar 

  38. Xu, C. X.; Liu, Y. Q.; Wang, J. P.; Geng, H. R.; Qiu, H. J. Nanoporous PdCu alloy for formic acid electro-oxidation. J. Power Sources 2012, 199, 124–131.

    Article  Google Scholar 

  39. Xu, C. X.; Zhang, Y.; Wang, L. Q.; Xu, L. Q.; Bian, X. F.; Ma, H. Y.; Ding, Y. Nanotubular mesoporous PdCu bimetallic electrocatalysts toward oxygen reduction reaction. Chem. Mater. 2009, 21, 3110–3116.

    Article  Google Scholar 

  40. Chen, W.; Dalach, P.; Schneider, W. F.; Wolverton, C. Interplay between subsurface ordering, surface segregation, and adsorption on Pt-Ti (111) near-surface alloys. Langmuir 2012, 28, 4683–4693.

    Article  Google Scholar 

  41. Zhang, H.; Jin, M. S.; Xiong, Y. J.; Lim, B.; Xia, Y. N. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc. Chem. Res. 2013, 46, 1783–1794.

    Article  Google Scholar 

  42. Lang, X. Y.; Han, G. F.; Xiao, B. B.; Gu, L.; Yang, Z. Z.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Jiang, Q. Mesostructured intermetallic compounds of platinum and non-transition metals for enhanced electrocatalysis of oxygen reduction reaction. Adv. Funct. Mater. 2015, 25, 230–237.

    Article  Google Scholar 

  43. Wang, Y.; Wang, Y. Z.; Zhang, C.; Kou, T. Y.; Zhang, Z. H. Tuning the ligament/channel size of nanoporous copper by temperature control. CrystEngComm 2012, 14, 8352–8356.

    Article  Google Scholar 

  44. Wang, R. Y.; Xu, C. X.; Bi, X. X.; Ding, Y. Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts. Energy Environ. Sci 2012, 5, 5281–5286.

    Article  Google Scholar 

  45. Wang, Y.; Jia, L. L.; Dai, W. L.; Wang, W. M.; Fan, K. N. Theoretical study about adsorption of atomic oxygen on unmodified and I-modified Ag (100) surface. J. Chem. Phys. 2003, 118, 11210–11216.

    Article  Google Scholar 

  46. Zhang, L.; Lee, K.; Zhang, J. J. The effect of heat treatment on nanoparticle size and ORR activity for carbon-supported Pd-Co alloy electrocatalysts. Electrochim. Acta 2007, 52, 3088–3094.

    Article  Google Scholar 

  47. Chen, X. T.; Jiang, Y. Y.; Sun, J. Z.; Jin, C. H.; Zhang, Z. H. Highly active nanoporous Pt-based alloy as anode and cathode catalyst for direct methanol fuel cells. J. Power Sources 2014, 267, 212–218.

    Article  Google Scholar 

  48. Neergat, M.; Rahul, R. Unsupported Cu-Pt core-shell nanoparticles: Oxygen reduction reaction (ORR) catalyst with better activity and reduced precious metal content. J. Electrochem. Soc. 2012, 159, F234–F241.

    Article  Google Scholar 

  49. Myers, J. M.; Bomberger, H. B.; Froes, F. H. Corrosion behavior and use of titanium and its alloys. JOM 1984, 36, 50–60.

    Article  Google Scholar 

  50. Sun, J. Z.; Wang, Y. Z.; Zhang, C.; Kou, T. Y.; Zhang, Z. H. Anodization driven enhancement of catalytic activity of Pd towards electro-oxidation of methanol, ethanol and formic acid. Electrochem. Commun. 2012, 21, 42–45.

    Article  Google Scholar 

  51. Zhang, J. T.; Huang, M. H.; Ma, H. Y.; Tian, F.; Pan, W.; Chen, S. H. High catalytic activity of nanostructured Pd thin films electrochemically deposited on polycrystalline Pt and Au substrates towards electro-oxidation of methanol. Electrochem. Commun. 2007, 9, 1298–1304.

    Article  Google Scholar 

  52. Chen, L. Y.; Guo, H.; Fujita, T.; Hirata, A.; Zhang, W.; Inoue, A.; Chen, M. W. Nanoporous PdNi bimetallic catalyst with enhanced electrocatalytic performances for electrooxidation and oxygen reduction reactions. Adv. Funct. Mater. 2011, 21, 4364–4370.

    Article  Google Scholar 

  53. Pan, W.; Zhang, X. K.; Ma, H. Y.; Zhang, J. T. Electrochemical synthesis, voltammetric behavior, and electrocatalytic activity of Pd nanoparticles. J. Phys. Chem. C 2008, 112, 2456–2461.

    Article  Google Scholar 

  54. Wang, X. G.; Wang, W. M.; Qi, Z.; Zhao, C. C.; Ji, H.; Zhang, Z. H. Novel Raney-like nanoporous Pd catalyst with superior electrocatalytic activity towards ethanol electrooxidation. Int. J. Hydrogen Energ. 2012, 37, 2579–2587.

    Article  Google Scholar 

  55. Trasatti, S.; Petrii, O. A. Real surface area measurements in electrochemistry. J. Electroanal. Chem. 1992, 327, 353–376.

    Article  Google Scholar 

  56. Yu, J. S.; Ding, Y.; Xu, C. X.; Inoue, A.; Sakurai, T.; Chen, M. W. Nanoporous metals by dealloying multicomponent metallic glasses. Chem. Mater. 2008, 20, 4548–4550.

    Article  Google Scholar 

  57. Xu, C. X.; Liu, A. H.; Qiu, H. J.; Liu, Y. Q. Nanoporous PdCu alloy with enhanced electrocatalytic performance. Electrochem. Commun. 2011, 13, 766–769.

    Article  Google Scholar 

  58. Wang, R. Y.; Liu, J. G.; Liu, P.; Bi, X. X.; Yan, X. L.; Wang, W. X.; Meng, Y. F.; Ge, X. B.; Chen, M. W.; Ding, Y. Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells. Nano Res. 2014, 7, 1569–1580.

    Article  Google Scholar 

  59. Stamenkovic, V.; Schmidt, T. J.; Ross, P. N.; Markovic, N. M. Surface composition effects in electrocatalysis: Kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J. Phys. Chem. B 2002, 106, 11970–11979.

    Article  Google Scholar 

  60. Holewinski, A.; Linic, S. Elementary mechanisms in electrocatalysis: Revisiting the ORR tafel slope. J. Electrochem. Soc. 2012, 159, H864–H870.

    Article  Google Scholar 

  61. Rahul, R.; Singh, R. K.; Neergat, M. Effect of oxidative heat-treatment on electrochemical properties and oxygen reduction reaction (ORR) activity of Pd-Co alloy catalysts. J. Electroanal. Chem. 2014, 712, 223–229.

    Article  Google Scholar 

  62. Kongkanand, A.; Kuwabata, S.; Girishkumar, G.; Kamat, P. Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction reaction. Langmuir 2006, 22, 2392–2396.

    Article  Google Scholar 

  63. Li, X. W.; Huang, Q. H.; Zou, Z. Q.; Xia, B. J.; Yang, H. Low temperature preparation of carbon-supported PdCo alloy electrocatalysts for methanol-tolerant oxygen reduction reaction. Electrochim. Acta 2008, 53, 6662–6667.

    Article  Google Scholar 

  64. Neergat, M.; Gunasekar, V.; Rahul, R. Carbon-supported Pd–Fe electrocatalysts for oxygen reduction reaction (ORR) and their methanol tolerance. J. Electroanal. Chem. 2011, 658, 25–32.

    Article  Google Scholar 

  65. Fouda-Onana, F.; Savadogo, O. Study of O2 and OH adsorption energies on Pd-Cu alloys surface with a quantum chemistry approach. Electrochim. Acta 2009, 54, 1769–1776.

    Article  Google Scholar 

  66. Gobal, F.; Arab, R.; Nahali, M. A comparative DFT study of atomic and molecular oxygen adsorption on neutral and negatively charged PdxCu3-x (x = 0–3) nano-clusters. J. Mol. Struct.: THEOCHEM 2010, 959, 15–21.

    Article  Google Scholar 

  67. Sha, Y.; Yu, T. H.; Merinov, B. V.; Goddard, W. A., III. DFT prediction of oxygen reduction reaction on palladiumcopper alloy surfaces. ACS Catal. 2014, 4, 1189–1197.

    Article  Google Scholar 

  68. Li, X. Y.; Yang, H. M. Pd hybridizing ZnO/kaolinite nanocomposites: Synthesis, microstructure, and enhanced photocatalytic property. Appl. Clay Sci. 2014, 100, 43–49.

    Article  Google Scholar 

  69. Xu, D.; Liu, Z. P.; Yang, H. Z.; Liu, Q. S.; Zhang, J.; Fang, J. Y.; Zou, S. Z.; Sun, K. Solution-based evolution and enhanced methanol oxidation activity of monodisperse platinum-copper nanocubes. Angew. Chem., Int. Ed. 2009, 48, 4217–4221.

    Article  Google Scholar 

  70. Ou, L. H.; Chen, S. L. Comparative study of oxygen reduction reaction mechanisms on the Pd(111) and Pt(111) surfaces in acid medium by DFT. J. Phys. Chem. C 2013, 117, 1342–1349.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Zhang.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Si, C., Wang, Y. et al. Multicomponent platinum-free nanoporous Pd-based alloy as an active and methanol-tolerant electrocatalyst for the oxygen reduction reaction. Nano Res. 9, 1831–1843 (2016). https://doi.org/10.1007/s12274-016-1076-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1076-z

Keywords

Navigation