Skip to main content
Log in

A facile one-step approach to hierarchically assembled core–shell-like MnO2@MnO2 nanoarchitectures on carbon fibers: An efficient and flexible electrode material to enhance energy storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hierarchical core–shell-like MnO2 nanostructures (NSs) were used to anchor MnO2 hexagonal nanoplate arrays (HNPAs) on carbon cloth (CC) fibers. The NSs were prepared by a novel one-step electrochemical deposition method. Under an external cathodic voltage of -2.0 V for 30 min, hierarchical core–shell-like MnO2-NS-decorated MnO2 HNPAs (MnO2 NSs@MnO2 HNPAs) were uniformly grown on CC with reliable adhesion. The phase purity and morphological properties of the samples were characterized by various physicochemical techniques. At a constant external cathodic voltage, growth of MnO2 NSs@MnO2 HNPAs on CC was carried for different time periods. When utilized as a flexible, robust, and binder-free electrode for pseudocapacitors, the hierarchical core–shell-like MnO2 NSs@MnO2 HNPAs on CC showed clearly enhanced electrochemical properties in 1 M Na2SO4 electrolyte solution. The results indicate that the MnO2 NSs@MnO2 HNPAs on CC have a maximum specific capacitance of 244.54 F/g at a current density of 0.5 A/g with excellent cycling stability compared to that of bare MnO2 HNPAs on CC (112.1 F/g at 0.5 A/g current density). We believe that the superior charge storage performance of the pseudocapacitive electrode can be mainly attributed to the hierarchical MnO2 NSs@MnO2 HNPAs building blocks that have a large specific surface area, offering additional electroactive sites for efficient electrochemical reactions. The facile and single-step approach to growth of hierarchical pseudocapacitive materials on textile based electrodes opens up the possibility for the fabrication of high-performance flexible energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, L.-F.; Zhang, X.-D.; Liang, H.-W.; Kong, M. G.; Guan, Q.-F.; Chen, P.; Wu, Z.-Y.; Yu, S.-H. Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 2012, 6, 7092–7102.

    Article  Google Scholar 

  2. Luo, Y. S.; Luo, J. S.; Jiang, J.; Zhou, W. W.; Yang, H. P.; Qi, X. Y.; Zhang, H.; Fan, H. J.; Yu, D. Y. W.; Li, C. M. et al. Seed-assisted synthesis of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ. Sci. 2012, 5, 6559–6566.

    Article  Google Scholar 

  3. Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

    Article  Google Scholar 

  4. Balogun, M.-S.; Qiu, W. T.; Wang, W.; Fang, P. P.; Lu, X. H.; Tong, Y. X. Recent advances in metal nitrides as highperformance electrode materials for energy storage devices. J. Mater. Chem. A 2015, 3, 1364–1387.

    Article  Google Scholar 

  5. Mohamed, S. G.; Chen, C.-J.; Chen, C. K.; Hu, S.-F.; Liu, R.-S. High-performance lithium-ion battery and symmetric supercapacitors based on FeCo2O4 nanoflakes electrodes. ACS Appl. Mater. Interfaces 2014, 6, 22701–22708.

    Article  Google Scholar 

  6. Lee, Y.-H.; Kim, J.-S.; Noh, J.; Lee, I.; Kim, H. J.; Choi, S.; Seo, J.; Jeon, S.; Kim, T.-S.; Lee, J.-Y. et al. Wearable textile battery rechargeable by solar energy. Nano Lett. 2013, 13, 5753–5761.

    Article  Google Scholar 

  7. Hou, J. B.; Shao, Y. Y.; Ellis, M. W.; Moore, R. B.; Yi, B. L. Graphene-based electrochemical energy conversion and storage: Fuel cells, supercapacitors and lithium ion batteries. Phys. Chem. Chem. Phys. 2011, 13, 15384–15402.

    Article  Google Scholar 

  8. Zhao, F.; Rahunen, N.; Varcoe, J. R.; Chandra, A.; Avignone-Rossa, C.; Thumser, A. E.; Slade, R. C. T. Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environ. Sci. Technol. 2008, 42, 4971–4976.

    Article  Google Scholar 

  9. Yu, P.; Zhang, X.; Wang, D. L.; Wang, L.; Ma, Y. W. Shapecontrolled synthesis of 3D hierarchical MnO2 nanostructures for electrochemical supercapacitors. Cryst. Growth Des. 2009, 9, 528–533.

    Article  Google Scholar 

  10. Yang, P. H.; Xiao, X.; Li, Y. Z.; Ding, Y.; Qiang, P. F.; Tan, X. H.; Mai, W. J.; Lin, Z. Y.; Wu, W. Z.; Li, T. Q. et al. Hydrogenated ZnO core–shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 2013, 7, 2617–2626.

    Article  Google Scholar 

  11. Liu, Y.; Wang, R.; Yan, X. Synergistic effect between ultrasmall nickel hydroxide nanoparticles and reduced graphene oxide sheets for the application in high-performance asymmetric supercapacitor. Sci. Rep. 2015, 5, 11095.

    Article  Google Scholar 

  12. Zhang, X. J.; Shi, W. H.; Zhu, J. X.; Zhao, W. Y.; Ma, J.; Mhaisalkar, S.; Maria, T. L.; Yang, Y. H.; Zhang, H.; Hng, H. H. et al. Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res. 2010, 3, 643–652.

    Article  Google Scholar 

  13. Hou, Y.; Cheng, Y. W.; Hobson, T.; Liu, J. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett. 2010, 10, 2727–2733.

    Article  Google Scholar 

  14. Maiti, S.; Pramanik, A.; Mahanty, S. Interconnected network of MnO2 nanowires with a “cocoonlike” morphology: Redox couple-mediated performance enhancement in symmetric aqueous supercapacitor. ACS Appl. Mater. Interfaces 2014, 6, 10754–10762.

    Article  Google Scholar 

  15. Toupin, M.; Brousse, T.; Bélanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 2004, 16, 3184–3190.

    Article  Google Scholar 

  16. Yu, Z.-Y.; Chen, L.-F.; Yu, S.-H. Growth of NiFe2O4 nanoparticles on carbon cloth for high performance flexible supercapacitors. J. Mater. Chem. A 2014, 2, 10889–10894.

    Article  Google Scholar 

  17. Chen, X. Y.; Chen, C.; Zhang, Z. J.; Xie, D. H.; Deng, X.; Liu, J. W. Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. J. Power Sources 2013, 230, 50–58.

    Article  Google Scholar 

  18. Shi, F.; Li, L.; Wang, X.-L.; Gu, C.-D.; Tu, J.-P. Metal oxide/hydroxide-based materials for supercapacitors. RSC Adv. 2014, 4, 41910–41921.

    Article  Google Scholar 

  19. Zhang, G. H.; Wang, T. H.; Yu, X. Z.; Zhang, H. N.; Duan, H. G.; Lu, B. G. Nanoforest of hierarchical Co3O4@NiCo2O4 nanowire arrays for high-performance supercapacitors. Nano Energy 2013, 2, 586–594.

    Article  Google Scholar 

  20. Veerasubramani, G. K.; Krishnamoorthy, K.; Kim, S. J. Electrochemical performance of an asymmetric supercapacitor based on graphene and cobalt molybdate electrodes. RSC Adv. 2015, 5, 16319–16327.

    Article  Google Scholar 

  21. Yang, Q.; Lu, Z. Y.; Liu, J. F.; Lei, X. D.; Chang, Z.; Luo, L.; Sun, X. M. Metal oxide and hydroxide nanoarrays: Hydrothermal synthesis and applications as supercapacitors and nanocatalysts. Prog. Nat. Sci.: Mater. Int. 2013, 23, 351–366.

    Article  Google Scholar 

  22. Cai, D. P.; Xiao, S. H.; Wang, D. D.; Liu, B.; Wang, L. L.; Liu, Y.; Li, H.; Wang, Y. R.; Li, Q. H.; Wang, T. H. Morphology controlled synthesis of NiCo2O4 nanosheet array nanostructures on nickel foam and their application for pseudocapacitors. Electrochim. Acta 2014, 142, 118–124.

    Article  Google Scholar 

  23. Bi, R.-R.; Wu, X.-L.; Cao, F.-F.; Jiang, L.-Y.; Guo, Y.-G.; Wan, L.-J. Highly dispersed RuO2 nanoparticles on carbon nanotubes: Facile synthesis and enhanced supercapacitance performance. J. Phys. Chem. C 2010, 114, 2448–2451.

    Article  Google Scholar 

  24. Ding, S. J.; Zhu, T.; Chen, J. S.; Wang, Z. Y.; Yuan, C L.; Lou, X. W. Controlled synthesis of hierarchical NiO nanosheet hollow spheres with enhanced supercapacitive performance. J. Mater. Chem. 2011, 21, 6602–6606.

    Article  Google Scholar 

  25. Nagaraju, G.; Ko, Y. H.; Yu, J. S. Tricobalt tetroxide nanoplate arrays on flexible conductive fabric substrate: Facile synthesis and application for electrochemical supercapacitors. J. Power Sources 2015, 283, 251–259.

    Article  Google Scholar 

  26. Huang, J. C.; Xu, P. P.; Cao, D. X.; Zhou, X. B.; Yang, S. N.; Li, Y. J.; Wang, G. L. Asymmetric supercapacitors based on β-Ni(OH)2 nanosheets and activated carbon with high energy density. J. Power Sources 2014, 246, 371–376.

    Article  Google Scholar 

  27. Chen, S.; Zhu, J. W.; Wu, X. D.; Han, Q. F.; Wang, X. Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 2010, 4, 2822–2830.

    Article  Google Scholar 

  28. Zhou, J.; Huang, Y.; Cao, X. H.; Ouyang, B.; Sun, W. P.; Tan, C. L.; Zhang, Y.; Ma, Q. L.; Liang, S. Q.; Yan, Q. Y. et al. Two-dimensional NiCo2O4 nanosheet-coated threedimensional graphene networks for high-rate, long-cyclelife supercapacitors. Nanoscale 2015, 7, 7035–7039.

    Article  Google Scholar 

  29. Liu, B.; Liu, B. Y.; Wang, Q. F.; Wang, X. F.; Xiang, Q. Y.; Chen, D.; Shen, G. Z. New energy storage option: Toward ZnCo2O4 nanorods/nickel foam architectures for highperformance supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 10011–10017.

    Article  Google Scholar 

  30. Ma, J. P.; Cheng, Q. L.; Pavlinek, V.; Saha, P.; Li, C. Z. Morphology-controllable synthesis of MnO2 hollow nanospheres and their supercapacitive performance. New J. Chem. 2013, 37, 722–728.

    Article  Google Scholar 

  31. Kang, J. L.; Hirata, A.; Kang, L. J.; Zhang, X. M.; Hou, Y.; Chen, L. Y.; Li, C.; Fujita, T.; Akagi, K.; Chen, M. W. Enhanced supercapacitor performance of MnO2 by atomic doping. Angew. Chem., Int. Ed. 2013, 52, 1664–1667.

    Article  Google Scholar 

  32. Portehault, D.; Cassaignon, S.; Nassif, N.; Baudrin, E.; Jolivet, J.-P. A Core–corona hierarchical manganese oxide and its formation by an aqueous soft chemistry mechanism. Angew. Chem., Int. Ed. 2008, 47, 6441–6444.

    Article  Google Scholar 

  33. Chen, Y.-C.; Hsu, Y.-K.; Lin, Y.-G.; Lin, Y.-K.; Horng, Y.-Y.; Chen, L.-C.; Chen, K.-H. Highly flexible supercapacitors with manganese oxide nanosheet/carbon cloth electrode. Electrochim. Acta 2011, 56, 7124–7130.

    Article  Google Scholar 

  34. Zhang, D. Y.; Zhang, Y. H.; Luo, Y. S.; Chu, P. K. Highly porous honeycomb manganese oxide@carbon fibers core–shell nanocables for flexible supercapacitors. Nano Energy 2015, 13, 47–57.

    Article  Google Scholar 

  35. Zhu, S. J.; Cen, W. L.; Hao, L. L.; Ma, J. J.; Yu, L.; Zheng, H. L.; Zhang, Y. X. Flower-like MnO2 decorated activated multihole carbon as high-performance asymmetric supercapacitor electrodes. Mater. Lett. 2014, 135, 11–14.

    Article  Google Scholar 

  36. Feng, X. M.; Chen, N. N.; Zhang, Y.; Yan, Z. Z.; Liu, X. F.; Ma, Y. W.; Shen, Q. M.; Wang, L. H.; Huang, W. The selfassembly of shape controlled functionalized graphene-MnO2 composites for application as supercapacitors. J. Mater. Chem. A 2014, 2, 9178–9184.

    Article  Google Scholar 

  37. Huang, M.; Zhang, Y. X.; Li, F.; Wang, Z. C.; Hu, N.; Wen, Z. Y.; Liu, Q. Merging of kirkendall growth and ostwald ripening: CuO@MnO2 core–shell architectures for asymmetric supercapacitors. Sci. Rep. 2014, 4, 4518.

    Google Scholar 

  38. Tao, J. Y.; Liu, N. S.; Li, L. Y.; Su, J.; Gao, Y. H. Hierarchical nanostructures of polypyrrole@MnO2 composite electrodes for high performance solid-state asymmetric supercapacitors. Nanoscale 2014, 6, 2922–2928.

    Article  Google Scholar 

  39. Yuan, C. Z.; Hou, L. R.; Yang, L.; Li, D. K.; Shen, L. F.; Zhang, F.; Zhang, X. G. Facile interfacial synthesis of flower-like hierarchical a-MnO2 sub-microspherical superstructures constructed by two-dimension mesoporous nanosheets and their application in electrochemical capacitors. J. Mater. Chem. 2011, 21, 16035–16041.

    Article  Google Scholar 

  40. Zhang, X. M.; Ma, J.; Yang, W. L.; Gao, Z.; Wang, J.; Liu, Q.; Liu, J. Y.; Jing, X. Y. Manganese dioxide core–shell nanowires in situ grown on carbon spheres for supercapacitor application. CrystEngComm 2014, 16, 4016–4022.

    Article  Google Scholar 

  41. Cao, J.; Mao, Q. H.; Shi, L.; Qian, Y. T. Fabrication of γ-MnO2/α-MnO2 hollow core/shell structures and their application to water treatment. J. Mater. Chem. 2011, 21, 16210–16215.

    Article  Google Scholar 

  42. Wang, J.; Liu, J.; Zhou, Y. C.; Hodgson, P.; Li, Y. C. Onepot facile synthesis of hierarchical hollow microspheres constructed with MnO2 nanotubes and their application in lithium storage and water treatment. RSC Adv. 2013, 3, 25937–25943.

    Article  Google Scholar 

  43. Shao, J. J.; Zhou, X. Y.; Liu, Q.; Zou, R. J.; Li, W. Y.; Yang, J. M.; Hu, J. Q. Mechanism analysis of the capacitance contributions and ultralong cycling-stability of the isomorphous MnO2@MnO2 core/shell nanostructures for supercapacitors. J. Mater. Chem. A 2015, 3, 6168–6176.

    Article  Google Scholar 

  44. Zhu, G. Y.; He, Z.; Chen, J.; Zhao, J.; Feng, X. M.; Ma, Y. W.; Fan, Q. L.; Wang, L. H.; Huang, W. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode. Nanoscale 2014, 6, 1079–1085.

    Article  Google Scholar 

  45. Li, S. Z.; Wen, J.; Mo, X. M.; Long, H.; Wang, H. N.; Wang, J. B.; Fang, G. J. Three-dimensional MnO2 nanowire/ZnO nanorod arrays hybrid nanostructure for high-performance and flexible supercapacitor electrode. J. Power Sources 2014, 256, 206–211.

    Article  Google Scholar 

  46. Yu, L.; Zhang, G. Q.; Yuan, C. Z.; Lou, X. W. Hierarchical NiCo2O4@MnO2 core–shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chem. Comm. 2013, 49, 137–139.

    Article  Google Scholar 

  47. Klankowski, S. A.; Pandey, G. P.; Malek, G.; Thomas, C. R.; Bernasek, S. L.; Wu, J.; Li, J. Higher-power supercapacitor electrodes based on mesoporous manganese oxide coating on vertically aligned carbon nanofibers. Nanoscale 2015, 7, 8485–8494.

    Article  Google Scholar 

  48. Xia, H.; Zhu, D. D.; Luo, Z. T.; Yu, Y.; Shi, X. Q.; Yuan, G. L.; Xie, J. P. Hierarchically structured Co3O4@Pt@MnO2 nanowire arrays for high-performance supercapacitors. Sci. Rep. 2013, 3, 2978.

    Google Scholar 

  49. Nagaraju, G.; Ko, Y. H.; Yu, J. S. Self-aßsembled hierarchical ß-cobalt hydroxide nanostructures on conductive textiles by one-step electrochemical deposition. CrystEngComm 2014, 16, 11027–11034.

    Article  Google Scholar 

  50. Lee, H. K.; Kim, M. S.; Yu, J. S. Effect of AZO seed layer on electrochemical growth and optical properties of ZnO nanorod arrays on ITO glass. Nanotechnology 2011, 22, 445602.

    Article  Google Scholar 

  51. Nagaraju, G.; Ko, Y. H.; Yu, J. S. Effect of diameter and height of electrochemically-deposited ZnO nanorod arrays on the performance of piezoelectric nanogenerators. Mater. Chem. Phys. 2015, 149–150, 393–399.

    Article  Google Scholar 

  52. Ko, Y. H.; Kim, S.; Park, W.; Yu, J. S. Facile fabrication of forest-like ZnO hierarchical structures on conductive fabric substrate. Phys. Status Solidi-Rapid Res. Lett. 2012, 6, 355–357.

    Article  Google Scholar 

  53. Ko, Y. H.; Lee, S. H.; Yu, J. S. Mesoporous and hierarchical manganese dioxide nanoplates/nanowalls on Ni/PET conductive fabric. Phys. Status Solidi-Rapid Res. Lett. 2012, 6, 385–387.

    Article  Google Scholar 

  54. Buciuman, F.; Patcas, F.; Craciun, R.; Zahn, D. R. T. Vibrational spectroscopy of bulk and supported manganese oxides. Phys. Chem. Chem. Phys. 1999, 1, 185–190.

    Article  Google Scholar 

  55. Sun, M.; Lan, B.; Lin, T.; Cheng, G.; Ye, F.; Yu, L.; Cheng, X. L.; Zheng, X. Y. Controlled synthesis of nanostructured manganese oxide: Crystalline evolution and catalytic activities. CrystEngComm 2013, 15, 7010–7018.

    Article  Google Scholar 

  56. Zhi, M. J.; Manivannan, A.; Meng, F. K.; Wu, N. Q. Highly conductive electrospun carbon nanofiber/MnO2 coaxial nanocables for high energy and power density supercapacitors. J. Power Sources 2012, 208, 345–353.

    Article  Google Scholar 

  57. Luo, Y. S.; Jiang, J.; Zhou, W. W.; Yang, H. P.; Luo, J. S.; Qi, X. Y.; Zhang, H.; Yu, D. Y. W.; Li, C. M.; Yu, T. Self-assembly of well-ordered whisker-like manganese oxide arrays on carbon fiber paper and its application as electrode material for supercapacitors. J. Mater. Chem. 2012, 22, 8634–8640.

    Article  Google Scholar 

  58. Cheng, H. H.; Long, L.; Shu, D.; Wu, J. Q.; Gong, Y. B.; He, C.; Kang, Z. X.; Zou, X. P. The supercapacitive behavior and excellent cycle stability of graphene/MnO2 composite prepared by an electrostatic self-assembly process. Int. J. Hydrogen Energy 2014, 39, 16151–16161.

    Article  Google Scholar 

  59. Yan, J.; Wei, T.; Cheng, J.; Fan, Z. J.; Zhang, M. L. Preparation and electrochemical properties of lamellar MnO2 for supercapacitors. Mater. Res. Bull. 2010, 45, 210–215.

    Article  Google Scholar 

  60. Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; Wang, X. L.; Gu, C. D.; Zhao, X.-B.; Fan, H. J. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 2012, 6, 5531–5538.

    Article  Google Scholar 

  61. Veerasubramani, G. K.; Krishnamoorthy, K.; Kim, S. J. Improved electrochemical performances of binder-free CoMoO4 nanoplate arrays@Ni foam electrode using redox additive electrolyte. J. Power Sources 2016, 306, 378–386.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Su Yu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaraju, G., Ko, Y.H., Cha, S.M. et al. A facile one-step approach to hierarchically assembled core–shell-like MnO2@MnO2 nanoarchitectures on carbon fibers: An efficient and flexible electrode material to enhance energy storage. Nano Res. 9, 1507–1522 (2016). https://doi.org/10.1007/s12274-016-1047-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1047-4

Keywords

Navigation