Skip to main content
Log in

Field-dependent spin waves in high-aspect-ratio single-crystal ferromagnetic nanowires

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We investigate the spin wave (SW) modes in high-aspect-ratio single-crystal ferromagnetic nanowires (FMNWs) using an all-optical time-resolved magnetooptical Kerr effect (TR-MOKE) microscope. The precessional magnetization dynamics in such FMNWs unveil the presence of uniform and quantized SW modes that can be tuned by varying the bias magnetic field (H). The frequencies of the modes are observed to decrease systematically with a decreasing magnetic field, and the number of modes in the spectrum is reduced from four to three for H < 0.7 kOe. To understand these results, we perform micromagnetic simulations that reveal the presence of edge, standing wave, and uniform SW modes in the nanowires (NWs). Our simulations clearly show how the standing wave and uniform SW modes coalesce to form a single mode with uniform precession over the entire NW for H < 0.7 kOe, reproducing the experimentally observed reduction in modes. Our study elucidates the possibility of manipulating the SW modes in magnetic nanostructures, which is useful for applications in magnonic and spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allwood, D. A.; Xiong, G.; Faulkner, C. C.; Atkinson, D.; Petit, D.; Cowburn, R. P. Magnetic domain-wall logic. Science 2005, 309, 1688–1692.

    Article  Google Scholar 

  2. Parkin, S. S. P.; Hayashi, M.; Thomas, L. Magnetic domainwall racetrack memory. Science 2008, 320, 190–194.

    Article  Google Scholar 

  3. Zhang, S.; Oliver, S. A.; Israeloff, N. E.; Vittoria, C. Highsensitivity ferromagnetic resonance measurements on micrometer-sized samples. Appl. Phys. Lett. 1997, 70, 2756–2758.

    Article  Google Scholar 

  4. Choi, S.; Lee, K.-S.; Guslienko, K. Y.; Kim, S.-K. Strong radiation of spin waves by core reversal of a magnetic vortex and their wave behaviors in magnetic nanowire waveguides. Phys. Rev. Lett. 2007, 98, 087205.

    Article  Google Scholar 

  5. Kim, S.-K.; Lee, K.-S.; Han, D.-S. A gigahertz-range spinwave filter composed of width-modulated nanostrip magnoniccrystal waveguides. Appl. Phys. Lett. 2009, 95, 082507.

    Article  Google Scholar 

  6. Encinas-Oropesa, A.; Demand, M.; Piraux, L.; Ebels, U.; Huynen, I. Effect of dipolar interactions on the ferromagnetic resonance properties in arrays of magnetic nanowires. J. Appl. Phys. 2001, 89, 6704–6706.

    Article  Google Scholar 

  7. Arias, R. Influence of roughness on the magnetostatic modes of ferromagnetic nano-wires. Phys. B: Cond. Matter 2006, 384, 25–27.

    Article  Google Scholar 

  8. Arias, R.; Mills, D. L. Magnetostatic modes in ferromagnetic nanowires. II. A method for cross sections with very large aspect ratio. Phys. Rev. B 2005, 72, 104418.

    Article  Google Scholar 

  9. Mathieu, C.; Jorzick, J.; Frank, A.; Demokritov, S. O.; Slavin, A. N.; Hillebrands, B.; Bartenlian, B.; Chappert, C.; Decanini, D.; Rousseaux, F. et al. Lateral quantization of spin waves in micron size magnetic wires. Phys. Rev. Lett. 1998, 81, 3968–3971.

    Article  Google Scholar 

  10. Tartakovskaya, E. V. Quantized spin-wave modes in long cylindrical ferromagnetic nanowires in a transverse external magnetic field. Phys. Rev. B 2005, 71, 180404(R).

    Article  Google Scholar 

  11. Goglio, G.; Pignard, S.; Radulescu, A.; Piraux, L.; Huynen, I.; Vanhoenacker, D.; Vander Vorst, A. Microwave properties of metallic nanowires. Appl. Phys. Lett. 1999, 75, 1769–1771.

    Article  Google Scholar 

  12. Demand, M.; Encinas-Oropesa, A.; Kenane, S.; Ebels, U.; Huynen, I.; Piraux, L. Ferromagnetic resonance studies of nickel and permalloy nanowire arrays. J. Magn. Magn. Mater. 2002, 249, 228–233.

    Article  Google Scholar 

  13. Encinas-Oropesa, A.; Demand, M.; Piraux, L.; Huynen, I.; Ebels, U. Dipolar interactions in arrays of nickel nanowires studied by ferromagnetic resonance. Phys. Rev. B 2001, 63, 104415.

    Article  Google Scholar 

  14. Dmytriiev, O.; Al-Jarah, U. A. S.; Gangmei, P.; Kruglyak, V. V.; Hicken, R. J.; Mahato, B. K.; Rana, B.; Agrawal, M.; Barman, A.; Mátéfi-Tempfli, M. et al. Static and dynamic magnetic properties of densely packed magnetic nanowire arrays. Phys. Rev. B 2013, 87, 174429.

    Article  Google Scholar 

  15. Stashkevich, A. A.; Roussigné, Y.; Djemia, P.; Chérif, S. M.; Evans, P. R.; Murphy, A. P.; Hendren, W. R.; Atkinson, R.; Pollard, R. J.; Zayats, A. V. et al. Spin-wave modes in Ninanorod arrays studied by Brillouin light scattering. Phys. Rev. B 2009, 80, 144406.

    Article  Google Scholar 

  16. De La Torre Medina, J.; Darques, M.; Piraux, L.; Encinas, A. Application of the anisotropy field distribution method to arrays of magnetic nanowires. J. Appl. Phys. 2009, 105, 023909.

    Article  Google Scholar 

  17. Boucher, V.; Lacroix, C.; Carignan, L.-P.; Yelon, A.; Ménard, D. Resonance modes in arrays of interacting ferromagnetic nanowires subjected to a transverse static magnetic field. Appl. Phys. Lett. 2011, 98, 112502.

    Article  Google Scholar 

  18. Dolocan, V. O. Spatial distribution of spin-wave modes in cylindrical nanowires of finite aspect ratio. J. Phys.: Cond. Matter 2011, 23, 446005.

    Google Scholar 

  19. Dolocan, V. O. Spin-torque effect on spin wave modes in magnetic nanowires. Appl. Phys. Lett. 2012, 101, 072409.

    Article  Google Scholar 

  20. Kamalakar, M. V.; Raychaudhuri, A. K. Low temperature electrical transport in ferromagnetic Ni nanowires. Phys. Rev. B 2009, 79, 205417.

    Article  Google Scholar 

  21. Kamalakar, M. V.; Raychaudhuri, A. K.; Wei, X. Y.; Teng, J.; Prewett, P. D. Temperature dependent electrical resistivity of a single strand of ferromagnetic single crystalline nanowire. Appl. Phys. Lett. 2009, 95, 013112.

    Article  Google Scholar 

  22. Kamalakar, M. V.; Raychaudhuri, A. K. Resistance anomaly near phase transition in confined ferromagnetic nanowires. Phys. Rev. B 2010, 82, 195425.

    Article  Google Scholar 

  23. Samanta, S.; Kamalakar, M. V.; Raychaudhuri, A. K. Investigation of very low-frequency noise in ferromagnetic nickel nanowires. J. Nanosci. Nanotech. 2009, 9, 5243–5247.

    Article  Google Scholar 

  24. Pal, S.; Rana, B.; Saha, S.; Mandal, R.; Hellwig, O.; Romero- Vivas, J.; Mamica, S.; Klos, J. W.; Mruczkiewicz, M.; Sokolovskyy, M. L. et al. Time-resolved measurement of spin-wave spectra in CoO capped [Co(t)/Pt(7Å)](n-1) Co(t) multilayer systems. J. Appl. Phys. 2012, 111, 07C507.

    Article  Google Scholar 

  25. Rana, B.; Barman, A. Magneto-optical measurements of collective spin dynamics of two-dimensional arrays of ferromagnetic nanoelements. SPIN 2013, 3, 1330001.

    Article  Google Scholar 

  26. Knorren, R.; Bennemann, K. H.; Burgermeister, R.; Aeschlimann, M. Dynamics of excited electrons in copper and ferromagnetic transition metals: Theory and experiment. Phys. Rev. B 2000, 61, 9427–9440.

    Article  Google Scholar 

  27. Zhang, G. P.; Hübner, W. Laser-induced ultrafast demagnetization in ferromagnetic metals. Phys. Rev. Lett. 2000, 85, 3025–3028.

    Article  Google Scholar 

  28. Beaurepaire, E.; Turner, G. M.; Harrel, S. M.; Beard, M. C.; Bigot, J.-Y.; Schmuttenmaer, C. A. Coherent terahertz emission from ferromagnetic films excited by femtosecond laser pulses. Appl. Phys. Lett. 2004, 84, 3465–3467.

    Article  Google Scholar 

  29. Koopmans, B.; Ruigrok, J. J. M.; Longa, F. D.; de Jonge, W. J. M. Unifying ultrafast magnetization dynamics. Phys. Rev. Lett. 2005, 95, 267207.

    Article  Google Scholar 

  30. Kittel, C. On the theory of ferromagnetic resonance absorption. Phys. Rev. 1948, 73, 155–161.

    Article  Google Scholar 

  31. Donahue, M.; Porter, D. G. OOMMF User’s guide, Version 1.0., NIST Interagency Report No. 6376; National Institute of Standard and Technology: Gaithersburg, MD, 1999. http://math.nist.gov/oommf (accessed Jul 1, 2015).

    Google Scholar 

  32. Kumar, D.; Dmytriiev, O.; Ponraj, S.; Barman, A. Numerical calculation of spin wave dispersions in magnetic nanostructures. J. Phys. D: Appl. Phys. 2012, 45, 015001.

    Article  Google Scholar 

  33. Venkat, G.; Kumar, D.; Franchin, M.; Dmytriiev, O.; Mruczkiewicz, M.; Fangohr, H.; Barman, A.; Krawczyk, M.; Prabhakar, A. Proposal for a standard micromagnetic problem: Spin wave dispersion in a magnonic waveguide. IEEE Trans. Magn. 2013, 49, 524–529.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjan Barman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Saha, S., Kamalakar, M.V. et al. Field-dependent spin waves in high-aspect-ratio single-crystal ferromagnetic nanowires. Nano Res. 9, 1426–1433 (2016). https://doi.org/10.1007/s12274-016-1038-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1038-5

Keywords

Navigation