Skip to main content
Log in

Ultrasensitive strain gauge with tunable temperature coefficient of resistivity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We demonstrate an ultrasensitive strain gauge based on a discontinuous metal film with a record detection limit as low as 8.3 × 10–6. Constructed by well-tunable crevices on the nanometer scale within the film, this gauge exhibits an ultrafast dynamic response to vibrations with a frequency range of 1 Hz to 10 kHz. More importantly, the temperature coefficient of resistivity (TCR) of the metal film is tunable owing to the cancellation effect caused by the possibility of tunneling across the nanoscale crevices (showing a negative temperature dependence) and the electron conduction within the metal islands (showing a positive temperature dependence). Consequently, a nullified TCR is achievable when the crevice size can be precisely controlled. Thus, a fabrication strategy to precisely control the nanoscale crevices was developed in this study through the real-time tracking of the electrical conductivity during thermal evaporation. The ultrasensitive strain gauge with a tunable thermal drift introduces numerous opportunities for precision devices and wearable electronics with superior reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shen, S. X.; Meng, L. Y.; Zhang, Y. J.; Han, J. B.; Ma, Z. W.; Hu, S.; He, Y. H.; Li, J. F.; Ren, B.; Shih, T. M. et al. Plasmon-enhanced second-harmonic generation nanorulers with ultrahigh sensitivities. Nano Lett. 2015, 15, 6716–6721.

    Article  Google Scholar 

  2. Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.

    Article  Google Scholar 

  3. Rogers, J. A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.

    Article  Google Scholar 

  4. Gong, S.; Schwalb, W.; Wang, Y. W.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. L. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 2014, 5, 3132.

    Google Scholar 

  5. Yi, L. Z.; Jiao, W. H.; Wu, K.; Qian, L. H.; Yu, X. X.; Xia, Q.; Mao, K. M.; Yuan, S. L.; Wang, S.; Jiang, Y. T. Nanoparticle monolayer-based flexible strain gauge with ultrafast dynamic response for acoustic vibration detection. Nano Res. 2015, 8, 2978–2987.

    Article  Google Scholar 

  6. Zhang, C.; Li, J.; Yang, S. S.; Jiao, W. H.; Xiao, S.; Zou, M. Q.; Yuan, S. L.; Xiao, F.; Wang, S.; Qian, L. H. Closely packed nanoparticle monolayer as a strain gauge fabricated by convective assembly at a confined angle. Nano Res. 2014, 7, 824–834.

    Article  Google Scholar 

  7. Zheng, M. Y.; Li, W. Y.; Xu, M. J.; Xu, N.; Chen, P.; Han, M.; Xie, B. Strain sensors based on chromium nanoparticle arrays. Nanoscale 2014, 6, 3930–3933.

    Article  Google Scholar 

  8. Jiao, W. H.; Yi, L. Z.; Zhang, C.; Wu, K.; Li, J.; Qian, L. H.; Wang, S.; Jiang, Y. T.; Das, B.; Yuan, S. L. Electrical conduction of nanoparticle monolayer for accurate tracking of mechanical stimulus in finger touch sensing. Nanoscale 2014, 6, 13809–13816.

    Article  Google Scholar 

  9. Segev-Bar, M.; Haick, H. Flexible sensors based on nanoparticles. ACS Nano 2013, 7, 8366–8378.

    Article  Google Scholar 

  10. Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.

    Article  Google Scholar 

  11. Kanoun, O.; Muller, C.; Benchirouf, A.; Sanli, A.; Dinh, T. N.; Al-Hamry, A.; Bu, L.; Gerlach, C.; Bouhamed, A. Flexible carbon nanotube films for high performance strain sensors. Sensors 2014, 14, 10042–10071.

    Article  Google Scholar 

  12. Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 2014, 8, 5154–5163.

    Article  Google Scholar 

  13. Kim, Y.; Zhu, J.; Yeom, B.; Di Prima, M.; Su, X. L.; Kim, J. G.; Yoo, S. J.; Uher, C.; Kotov, N. A. Stretchable nanoparticle conductors with self-organized conductive pathways. Nature 2013, 500, 59–63.

    Article  Google Scholar 

  14. Kang, D.; Pikhitsa, P. V.; Choi, Y. W.; Lee, C.; Shin, S. S.; Piao, L. F.; Park, B.; Suh, K. Y.; Kim, T. I.; Choi, M. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 2014, 516, 222–226.

    Article  Google Scholar 

  15. Yang, J.; Chen, J.; Su, Y. J.; Jing, Q. S.; Li, Z. L.; Yi, F.; Wen, X. N.; Wang, Z. N.; Wang, Z. L. Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 2015, 27, 1316–1326.

    Article  Google Scholar 

  16. Wang, Y.; Yang, T. T.; Lao, J. C.; Zhang, R. J.; Zhang, Y. Y.; Zhu, M.; Li, X.; Zang, X. B.; Wang, K. L.; Yu, W. J. et al. Ultra-sensitive graphene strain sensor for sound signal acquisition and recognition. Nano Res. 2015, 8, 1627–1636.

    Article  Google Scholar 

  17. Zhao, W.; Luo, J.; Shan, S. Y.; Lombardi, J. P.; Xu, Y.; Cartwright, W.; Lu, S. S.; Poliks, M.; Zhong, C. J. Nanoparticle-structured highly sensitive and anisotropic gauge sensors. Small 2015, 11, 4509–4516.

    Article  Google Scholar 

  18. Stassi, S.; Cauda, V.; Canavese, G.; Pirri, C. F. Flexible tactile sensing based on piezoresistive composites: A review. Sensors 2014, 14, 5296–5332.

    Article  Google Scholar 

  19. Li, Z. T.; Wang, Z. L. Air/liquid-pressure and heartbeatdriven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor. Adv. Mater. 2011, 23, 84–89.

    Article  Google Scholar 

  20. Pang, C.; Lee, G. Y.; Kim, T.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Suh, K. Y. A flexible and highly sensitive straingauge sensor using reversible interlocking of nanofibres. Nat. Mater. 2012, 11, 795–801.

    Article  Google Scholar 

  21. Nichols, W. W. Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am. J. Hypertens. 2005, 18, 3S–10S.

    Article  Google Scholar 

  22. Lazovic, B.; Mazic, S.; Zikich, D.; Žikic, D. The mathematical model of the radial artery blood pressure waveform through monitoring of the age-related changes. Wave Motion 2015, 56, 14–21.

    Article  Google Scholar 

  23. Simmons, J. G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 1963, 34, 1793–1803.

    Article  Google Scholar 

  24. Neugebauer, C. A.; Webb, M. B. Electrical conduction mechanism in ultrathin, evaporated metal films. J. Appl. Phys. 1962, 33, 74–82.

    Article  Google Scholar 

  25. Hu, N.; Karube, Y.; Yan, C.; Masuda, Z.; Fukunaga, H. Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater. 2008, 56, 2929–2936.

    Article  Google Scholar 

  26. Tanner, J. L.; Mousadakos, D.; Giannakopoulos, K.; Skotadis, E.; Tsoukalas, D. High strain sensitivity controlled by the surface density of platinum nanoparticles. Nanotechnology 2012, 23, 285501.

    Article  Google Scholar 

  27. Farcau, C.; Moreira, H.; Viallet, B.; Grisolia, J.; Ciuculescu-Pradines, D.; Amiens, C.; Ressier, L. Monolayered wires of gold colloidal nanoparticles for high-sensitivity strain sensing. J. Phys. Chem. C 2011, 115, 14494–14499.

    Article  Google Scholar 

  28. Tian, H.; Shu, Y.; Wang, X. F.; Mohammad, M. A.; Bie, Z.; Xie, Q. Y.; Li, C.; Mi, W. T.; Yang, Y.; Ren, T. L. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci. Rep. 2015, 5, 8603.

    Google Scholar 

  29. Chen, M. T.; Zhang, L.; Duan, S. S.; Jing, S. L.; Jiang, H.; Li, C. Z. Highly stretchable conductors integrated with a conductive carbon nanotube/graphene network and 3D porous poly(dimethylsiloxane). Adv. Funct. Mater. 2014, 24, 7548–7556.

    Article  Google Scholar 

  30. Segev-Bar, M.; Landman, A.; Nir-Shapira, M.; Shuster, G.; Haick, H. Tunable touch sensor and combined sensing platform: Toward nanoparticle-based electronic skin. ACS Appl. Mater. Interfaces 2013, 5, 5531–5541.

    Article  Google Scholar 

  31. Segev-Bar, M.; Konvalina, G.; Haick, H. High-resolution unpixelated smart patches with antiparallel thickness gradients of nanoparticles. Adv. Mater. 2015, 27, 1779–1784.

    Article  Google Scholar 

  32. Sun, P. Z.; Zhu, M.; Wang, K. L.; Zhong, M. L.; Wei, J. Q.; Wu, D. H.; Zhu, H. W. Small temperature coefficient of resistivity of graphene/graphene oxide hybrid membranes. ACS Appl. Mater. Interfaces 2013, 5, 9563–9571.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihua Qian or Songliu Yuan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, L., Jiao, W., Zhu, C. et al. Ultrasensitive strain gauge with tunable temperature coefficient of resistivity. Nano Res. 9, 1346–1357 (2016). https://doi.org/10.1007/s12274-016-1030-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1030-0

Keywords

Navigation