Skip to main content
Log in

Motion-based pH sensing using spindle-like micromotors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this study, we report a spindle-like micromotor. This device, which is fabricated using a one-step electrospinning method, consists of biodegradable polycaprolactone and an anionic surfactant. Intriguingly, not only can the resulting micromotor move autonomously on the surface of water for a long period of time (~40 min) due to the Marangoni effect, but it also exhibits a pH sensing behavior due to variations in the surface tension caused by the release of surfactant under different pH conditions. More interestingly, we reveal that the motion-based pH sensing property is size-dependent, with smaller structures exhibiting a higher sensitivity. In addition, since polycaprolactone is a biodegradable material, the micromotor described in this study can be easily degraded in solution. Hence, features such as one-step fabrication, motion readout, and biodegradability render this micromotor an attractive candidate for sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ibele, M.; Mallouk, T. E.; Sen, A. Schooling behavior of light-powered autonomous micromotors in water. Angew. Chem., Int. Ed. 2009, 48, 3308–3312.

    Article  Google Scholar 

  2. Solovev, A. A.; Mei, Y. F.; Ureña, E. B.; Huang, G. S.; Schmidt, O. G. Catalytic microtubular jet engines selfpropelled by accumulated gas bubbles. Small 2009, 5, 1688–1692.

    Article  Google Scholar 

  3. Dong, B.; Zhou, T.; Zhang, H.; Li, C. Y. Directed selfassembly of nanoparticles for nanomotors. ACS Nano 2013, 7, 5192–5198.

    Article  Google Scholar 

  4. Ju, G. N.; Cheng, M. J.; Xiao, M.; Xu, J. M.; Pan, K.; Wang, X.; Zhang, Y. J.; Shi, F. Smart transportation between three phases through a stimulus-responsive functionally cooperating device. Adv. Mater. 2013, 25, 2915–2919.

    Article  Google Scholar 

  5. Gao, W.; Sattayasamitsathit, S.; Orozco, J.; Wang, J. Highly efficient catalytic microengines: Template electrosynthesis of polyaniline/platinum microtubes. J. Am. Chem. Soc. 2011, 133, 11862–11864.

    Article  Google Scholar 

  6. Song, M. M.; Cheng, M. J.; Ju, G. N.; Zhang, Y. J.; Shi, F. Converting chemical energy into electricity through a functionally cooperating device with diving-surfacing cycles. Adv. Mater. 2014, 26, 7059–7063.

    Article  Google Scholar 

  7. Cheng, M. J.; Ju, G. N.; Zhang, Y. W.; Song, M. M.; Zhang, Y. J.; Shi, F. Supramolecular assembly of macroscopic building blocks through self-propelled locomotion by dissipating chemical energy. Small 2014, 10, 3907–3911.

    Article  Google Scholar 

  8. Paxton, W. F.; Sen, A.; Mallouk, T. E. Motility of catalytic nanoparticles through self-generated forces. Chem.—Eur. J. 2005, 11, 6462–6470.

    Article  Google Scholar 

  9. Chen, M.; Zang, J.; Xiao, D. Q.; Zhang, C.; Liu, F. Nanopumping molecules via a carbon nanotube. Nano Res. 2009, 2, 938–944.

    Article  Google Scholar 

  10. Dai, Y. T.; Tang, C.; Guo, W. L. Simulation studies of a “nanogun” based on carbon nanotubes. Nano Res. 2008, 1, 176–183.

    Article  Google Scholar 

  11. Magdanz, V.; Stoychev, G.; Ionov, L.; Sanchez, S.; Schmidt, O. G. Stimuli-responsive microjets with reconfigurable shape. Angew. Chem., Int. Ed. 2014, 53, 2673–2677.

    Article  Google Scholar 

  12. Liu, L. M.; Liu, M.; Su, Y. J.; Dong, Y. G.; Zhou, W.; Zhang, L. N.; Zhang, H.; Dong, B.; Chi, L. F. Tadpole-like artificial micromotor. Nanoscale 2015, 7, 2276–2280.

    Article  Google Scholar 

  13. Paxton, W. F.; Kistler, K. C.; Olmeda, C. C.; Sen, A.; St Angelo, S. K.; Cao, Y. Y.; Mallouk, T. E.; Lammert, P. E.; Crespi, V. H. Catalytic nanomotors: Autonomous movement of striped nanorods. J. Am. Chem. Soc. 2004, 126, 13424–13431.

    Article  Google Scholar 

  14. Wu, Z. G.; Lin, X. K.; Wu, Y. J.; Si, T. Y.; Sun, J. M.; He, Q. Near-infrared light-triggered “on/off” motion of polymer multilayer rockets. ACS Nano 2014, 8, 6097–6105.

    Article  Google Scholar 

  15. Mei, Y. F.; Huang, G. S.; Solovev, A. A.; Ureña, E. B.; Mönch, I.; Ding, F.; Reindl, T.; Fu, R. K. Y.; Chu, P. K.; Schmidt, O. G. Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers. Adv. Mater. 2008, 20, 4085–4090.

    Article  Google Scholar 

  16. Mou, F. Z.; Chen, C. R.; Zhong, Q.; Yin, Y. X.; Ma, H. R.; Guan, J. G. Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly(n-isopropylacrylamide) janus micromotors driven by simulated body fluid and blood plasma. ACS Appl. Mater. Interfaces 2014, 6, 9897–9903.

    Article  Google Scholar 

  17. Wu, Y. J.; Si, T. Y.; Lin, X. K.; He, Q. Near infraredmodulated propulsion of catalytic janus polymer multilayer capsule motors. Chem. Commun. 2015, 51, 511–514.

    Article  Google Scholar 

  18. Zhao, G. J.; Khezri, B.; Sanchez, S.; Schmidt, O. G.; Webster, R. D.; Pumera, M. Corrosion of self-propelled catalytic microengines. Chem. Commun. 2013, 49, 9125–9127.

    Article  Google Scholar 

  19. Kline, T. R.; Paxton, W. F.; Mallouk, T. E.; Sen, A. Catalytic nanomotors: Remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem., Int. Ed. 2005, 44, 744–746.

    Article  Google Scholar 

  20. Wang, W.; Castro, L. A.; Hoyos, M.; Mallouk, T. E. Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 2012, 6, 6122–6132.

    Article  Google Scholar 

  21. Sundararajan, S.; Lammert, P. E.; Zudans, A. W.; Crespi, V. H.; Sen, A. Catalytic motors for transport of colloidal cargo. Nano Lett. 2008, 8, 1271–1276.

    Article  Google Scholar 

  22. Wu, Y. J.; Wu, Z. G.; Lin, X. K.; He, Q.; Li, J. B. Autonomous movement of controllable assembled janus capsule motors. ACS Nano 2012, 6, 10910–10916.

    Article  Google Scholar 

  23. Wu, Z. G.; Wu, Y. J.; He, W. P.; Lin, X. K.; Sun, J. M.; He, Q. Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew. Chem., Int. Ed. 2013, 52, 7000–7003.

    Article  Google Scholar 

  24. Soler, L.; Magdanz, V.; Fomin, V. M.; Sanchez, S.; Schmidt, O. G. Self-propelled micromotors for cleaning polluted water. ACS Nano 2013, 7, 9611–9620.

    Article  Google Scholar 

  25. Kagan, D.; Calvo-Marzal, P.; Balasubramanian, S.; Sattayasamitsathit, S.; Manesh, K. M.; Flechsig, G. U.; Wang, J. Chemical sensing based on catalytic nanomotors: Motion-based detection of trace silver. J. Am. Chem. Soc. 2009, 131, 12082–12083.

    Article  Google Scholar 

  26. Wu, J.; Balasubramanian, S.; Kagan, D.; Manesh, K. M.; Campuzano, S.; Wang, J. Motion-based DNA detection using catalytic nanomotors. Nat. Commun. 2010, 1, 36.

    Article  Google Scholar 

  27. Wang, H.; Zhao, G. J.; Pumera, M. Blood electrolytes exhibit a strong influence on the mobility of artificial catalytic microengines. Phys. Chem. Chem. Phys. 2013, 15, 17277–17280.

    Article  Google Scholar 

  28. Moo, J. G. S.; Wang, H.; Zhao, G. J.; Pumera, M. Biomimetic artificial inorganic enzyme-free self-propelled microfish robot for selective detection of Pb2+ in water. Chem.—Eur. J. 2014, 20, 4292–4296.

    Article  Google Scholar 

  29. Zhao, G. J.; Sanchez, S.; Schmidt, O. G.; Pumera, M. Poisoning of bubble propelled catalytic micromotors: The chemical environment matters. Nanoscale 2013, 5, 2909–2914.

    Article  Google Scholar 

  30. Yu, X. P.; Li, Y. N.; Wu, J.; Ju, H. X. Motor-based autonomous microsensor for motion and counting immunoassay of cancer biomarker. Anal. Chem. 2014, 86, 4501–4507.

    Article  Google Scholar 

  31. Zörgiebel, F. M.; Pregl, S.; Römhildt, L.; Opitz, J.; Weber, W.; Mikolajick, T.; Baraban, L.; Cuniberti, G. Schottky barrier-based silicon nanowire pH sensor with live sensitivity control. Nano Res. 2014, 7, 263–271.

    Article  Google Scholar 

  32. Huang, Z. M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253.

    Article  Google Scholar 

  33. Zhang, W. N.; Lu, G.; Cui, C. L.; Liu, Y. Y.; Li, S. Z.; Yan, W. J.; Xing, C.; Chi, Y. R.; Yang, Y. H.; Huo, F. W. A family of metal–organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles. Adv. Mater. 2014, 26, 4056–4060.

    Article  Google Scholar 

  34. Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310–316.

    Article  Google Scholar 

  35. Wu, J.; Wang, N.; Wang, L.; Dong, H.; Zhao, Y.; Jiang, L. Electrospun porous structure fibrous film with high oil adsorption capacity. ACS Appl. Mater. Interfaces 2012, 4, 3207–3212.

    Article  Google Scholar 

  36. Li, Z. Y.; Wang, C. One-Dimensional Nanostructures: Electrospinning Technique and Unique Nanofibers; Springer-Verlag: Berlin Heidelberg, 2013.

    Book  Google Scholar 

  37. Mamun, A.; Bazuin, C. G.; Prud’homme, R. E. Morphologies of various polycaprolactone/polymer blends in ultrathin films. Macromolecules 2015, 48, 1412–1417.

    Article  Google Scholar 

  38. Zhao, G. J.; Seah, T. H.; Pumera, M. External-energyindependent polymer capsule motors and their cooperative behaviors. Chem.—Eur. J. 2011, 17, 12020–12026.

    Article  Google Scholar 

  39. Zhang, H.; Duan, W. T.; Liu, L.; Sen, A. Depolymerizationpowered autonomous motors using biocompatible fuel. J. Am. Chem. Soc. 2013, 135, 15734–15737.

    Article  Google Scholar 

  40. Xiao, M.; Cheng, M. J.; Zhang, Y. J.; Shi, F. Combining the Marangoni effect and the pH-responsive superhydrophobicity–superhydrophilicity transition to biomimic the locomotion process of the beetles of genus stenus. Small 2013, 9, 2509–2514.

    Article  Google Scholar 

  41. Xiao, M.; Jiang, C.; Shi, F. Design of a UV-responsive microactuator on a smart device for light-induced ON-OFFON motion. NPG Asia Mater. 2014, 6, e128.

    Article  Google Scholar 

  42. Xiao, M.; Guo, X. P.; Cheng, M. J.; Ju, G. N.; Zhang, Y. J.; Shi, F. pH-responsive on-off motion of a superhydrophobic boat: Towards the design of a minirobot. Small 2014, 10, 859–865.

    Article  Google Scholar 

  43. Gao, W.; D'Agostino, M.; Garcia-Gradilla, V.; Orozco, J.; Wang, J. Multi-fuel driven Janus micromotors. Small 2013, 9, 467–471.

    Article  Google Scholar 

  44. Dey, K. K.; Bhandari, S.; Bandyopadhyay, D.; Basu, S.; Chattopadhyay, A. The pH taxis of an intelligent catalytic microbot. Small 2013, 9, 1916–1920.

    Article  Google Scholar 

  45. Beattie, J. K.; Djerdjev, A. M.; Gray-Weale, A.; Kallay, N.; Lützenkirchen, J.; Preocanin, T.; Selmani, A. pH and the surface tension of water. J. Colloid Interface Sci. 2014, 422, 54–57.

    Article  Google Scholar 

  46. de Castro, F. H. B.; Gálvez-Borrego, A.; Calero-de Hoces, M. Surface tension of aqueous solutions of sodium 1-dodecanesulfonate from 20 °C to 50 °C and pH between 4 and 12. J. Chem. Eng. Data 1999, 44, 142–143.

    Article  Google Scholar 

  47. Ebbens, S.; Tu, M. H.; Howse, J. R.; Golestanian, R. Size dependence of the propulsion velocity for catalytic Janussphere swimmers. Phys. Rev. E 2012, 85, 020401.

    Article  Google Scholar 

  48. Dong, B.; Zhong, D. Y.; Chi, L. F.; Fuchs, H. Patterning of conducting polymers based on a random copolymer strategy: Toward the facile fabrication of nanosensors exclusively based on polymers. Adv. Mater. 2005, 17, 2736–2741.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Dong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Dong, Y., Sun, Y. et al. Motion-based pH sensing using spindle-like micromotors. Nano Res. 9, 1310–1318 (2016). https://doi.org/10.1007/s12274-016-1026-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1026-9

Keywords

Navigation