Skip to main content
Log in

Synthesis of well-defined Fe3O4 nanorods/N-doped graphene for lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The geometric size and distribution of magnetic nanoparticles are critical to the morphology of graphene (GN) nanocomposites, and thus they can affect the capacity and cycling performance when these composites are used as anode materials in lithium-ion batteries (LiBs). In this work, Fe3O4 nanorods were deposited onto fully extended nitrogen-doped GN sheets from a binary precursor in two steps, a hydrothermal process and an annealing process. This route effectively tuned the Fe3O4 nanorod size distribution and prevented their aggregation. The transformation of the binary precursor was characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). XPS analysis indicated the presence of N-doped GN sheets, and that the magnetic nanocrystals were anchored and uniformly distributed on the surface of the flattened N-doped GN sheets. As a high performance anode material, the structure was beneficial for electron transport and exchange, resulting in a large reversible capacity of 929 mA·h·g–1, high-rate capability, improved cycling stability, and higher electrical conductivity. Not only does the result provide a strategy for extending GN composites for use as LiB anode materials, but it also offers a route for the preparation of other oxide nanorods from binary precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xing, Z.; Ju, Z. C.; Yang, J.; Xu, H. Y.; Qian, Y. T. Onestep hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries. Nano Res. 2012, 5, 477–485.

    Article  Google Scholar 

  2. Liu, N.; Pan, Z. H.; Fu, L.; Zhang, C. H.; Dai, B. Y.; Liu, Z. F. The origin of wrinkles on transferred graphene. Nano Res. 2011, 4, 996–1004.

    Article  Google Scholar 

  3. Lu, Y.; Guo, J. Band gap of strained graphene nanoribbons. Nano Res. 2010, 3, 189–199.

    Article  Google Scholar 

  4. Mukherjee, R.; Thomas, A. V.; Krishnamurthy, A.; Koratkar, N. Photothermally reduced graphene as high-power anodes for lithium-ion batteries. ACS Nano 2012, 6, 7867–7878.

    Article  Google Scholar 

  5. Shen, J. F.; Shi, M.; Li, N.; Yan, B.; Ma, H. W.; Hu, Y. Z.; Ye, M. X. Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res. 2010, 3, 339–349.

    Article  Google Scholar 

  6. Meng, L. R.; Chen, W. M.; Tan, Y. W.; Zou, L.; Chen, C. P.; Zhou, H. P.; Peng, Q.; Li, Y. D. Fe3O4 octahedral colloidal crystals. Nano Res. 2011, 4, 370–375.

    Article  Google Scholar 

  7. Ngamchuea, K.; Tschulik, K.; Compton, R. G. Magnetic control: Switchable ultrahigh magnetic gradients at Fe3O4 nanoparticles to enhance solution-phase mass transport. Nano Res. 2015, 8, 3293–3306.

    Article  Google Scholar 

  8. Meng, S.; Greenlee, L. F.; Shen, Y. R.; Wang, E. G. Basic science of water: Challenges and current status towards a molecular picture. Nano Res. 2015, 8, 3085–3110.

    Article  Google Scholar 

  9. Zhao, L.; Gao, M. M.; Yue, W. B.; Jiang, Y.; Wang, Y.; Ren, Y.; Hu, F. Q. Sandwich-structured graphene-Fe3O4@carbon nanocomposites for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 9709–9715.

    Article  Google Scholar 

  10. Wei, W.; Yang, S. B.; Zhou, H. X.; Lieberwirth, I.; Feng, X. L.; Müllen, K. 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv. Mater. 2013, 25, 2909–2914.

    Article  Google Scholar 

  11. Wang, R. H.; Xu, C. H.; Sun, J.; Gao, L.; Lin, C. C. Flexible free-standing hollow Fe3O4/graphene hybrid films for lithium-ion batteries. J. Mater. Chem. A 2013, 1, 1794–1800.

    Article  Google Scholar 

  12. Jiang, Y.; Jiang, Z. J.; Yang, L. F.; Cheng, S.; Liu, M. L. A high-performance anode for lithium ion batteries: Fe3O4 microspheres encapsulated in hollow graphene shells. J. Mater. Chem. A 2015, 3, 11847–11856.

    Article  Google Scholar 

  13. Deng, D. H.; Pan, X. L.; Yu, L.; Cui, Y.; Jiang, Y. P.; Qi, J.; Li, W. X.; Fu, Q.; Ma, X. C.; Xue, Q. K. et al. Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 2011, 23, 1188–1193.

    Article  Google Scholar 

  14. Wei, D.; Liu, Y.; Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752–1758.

    Article  Google Scholar 

  15. Qiu, W. D.; Jiao, J. Q.; Xia, J.; Zhong, H. M.; Chen, L. P. Phosphorus-doped graphene-wrapped molybdenum disulfide hollow spheres as anode material for lithium-ion batteries. RSC Adv. 2014, 4, 50529–50535.

    Article  Google Scholar 

  16. Zhou, K. F.; Zhu, Y. H.; Yang, X. L.; Li, C. Z. One-pot preparation of graphene/Fe3O4 composites by a solvothermal reaction. New J. Chem. 2010, 34, 2950–2955.

    Article  Google Scholar 

  17. Li, X. Y.; Huang, X. L.; Liu, D. P.; Wang, X.; Song, S. Y.; Zhou, L.; Zhang, H. J. Synthesis of 3D hierarchical Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery. J. Phys. Chem. C 2011, 115, 21567–21573.

    Article  Google Scholar 

  18. Li, L.; Kovalchuk, A.; Fei, H. L.; Peng, Z. W.; Li, Y. L.; Kim, N. D.; Xiang, C. S.; Yang, Y.; Ruan, G. D.; Tour, J. M. Enhanced cycling stability of lithium-ion batteries using graphene-wrapped Fe3O4–graphene nanoribbons as anode materials. Adv. Energy Mater. 2015, 5, 1500171.

    Article  Google Scholar 

  19. Teymourian, H.; Salimi, A.; Khezrian, S. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosens. Bioelectron. 2013, 49, 1–8.

    Article  Google Scholar 

  20. Behera, S. K. Enhanced rate performance and cyclic stability of Fe3O4–graphene nanocomposites for Li ion battery anodes. Chem. Commun. 2011, 47, 10371–10373.

    Article  Google Scholar 

  21. Zhu, C. Z.; Guo, S. J.; Fang, Y. X.; Han, L.; Wang, E. K.; Dong, S. J. One-step electrochemical approach to the synthesis of graphene/MnO2 nanowall hybrids. Nano Res. 2011, 4, 648–657.

    Article  Google Scholar 

  22. Hamilton, C. E.; Lomeda, J. R.; Sun, Z. Z.; Tour, J. M.; Barron, A. R. Radical addition of perfluorinated alkyl iodides to multi-layered graphene and single-walled carbon nanotubes. Nano Res. 2010, 3, 138–145.

    Article  Google Scholar 

  23. Su, J.; Cao, M. H.; Ren, L.; Hu, C. W. Fe3O4–graphene nanocomposites with improved lithium storage and magnetism properties. J. Phys. Chem. C 2011, 115, 14469–14477.

    Article  Google Scholar 

  24. Jiao, J. Q.; Xia, J.; Qiu, W. D.; Tang, J. G.; Li, G. R.; Kuang, D. B.; Tong, Y. X.; Chen, L. P. Hierarchical tree-like heterostructure arrays for enhanced photoeletrochemical activity. Electrochim. Acta 2014, 136, 217–222.

    Article  Google Scholar 

  25. Jiao, J. Q.; Tang, J. G.; Wang, G. M.; Wang, Y.; Huang, L. J.; Huang, Z.; Liu, J. X.; Zhu, Y. K.; Belfiore, L. A. Synthesis of photocatalytic hematite nanotube array using a template-free solvothermal approach. RSC Adv. 2015, 5, 60920–60925.

    Article  Google Scholar 

  26. Wang, G. M.; Ling, Y. C.; Wheeler, D. A.; George, K. E. N.; Horsley, K.; Heske, C.; Zhang, J. Z.; Li, Y. Facile synthesis of highly photoactive a-Fe2O3-based films for water oxidation. Nano Lett. 2011, 11, 3503–3509.

    Article  Google Scholar 

  27. Ma, R. G.; Wang, M.; Tao, P. P.; Wang, Y.; Cao, C. W.; Shan, G. C.; Yang, S. L.; Xi, L. J.; Chung, J. C. Y.; Lu, Z. G. Fabrication of FeF3 nanocrystals dispersed into a porous carbon matrix as a high performance cathode material for lithium ion batteries. J. Mater. Chem. A 2013, 1, 15060–15067.

    Article  Google Scholar 

  28. Li, B. J.; Cao, H. Q.; Shao, J.; Qu, M. Z.; Warner, J. H. Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices. J. Mater. Chem. 2011, 21, 5069–5075.

    Article  Google Scholar 

  29. Kwon, S. K.; Kimijima, K.; Kanie, K.; Muramatsu, A.; Suzuki, S.; Matsubara, E.; Waseda, Y. Effect of silicate ions on conversion of ferric hydroxide to ß-FeOOH and a-Fe2O3. Mater. Trans. 2005, 46, 155–158.

    Article  Google Scholar 

  30. He, H. K.; Gao, C. Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles. ACS Appl. Mater. Interfaces 2010, 2, 3201–3210.

    Article  Google Scholar 

  31. Li, L. S.; Yu, Y. H.; Meng, F.; Tan, Y. Z.; Hamers, R. J.; Jin, S. Facile solution synthesis of a-FeF3·3H2O nanowires and their conversion to a-Fe2O3 nanowires for photoelectrochemical application. Nano Lett. 2012, 12, 724–731.

    Article  Google Scholar 

  32. Lei, C.; Han, F.; Li, D.; Li, W. C.; Sun, Q.; Zhang, X. Q.; Lu, A. H. Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes. Nanoscale 2013, 5, 1168–1175.

    Article  Google Scholar 

  33. Zubir, N. A.; Yacou, C.; Motuzas, J.; Zhang, X. W.; Diniz da Costa, J. C. Structural and functional investigation of graphene oxide–Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction. Sci. Rep. 2014, 4, 4594.

    Article  Google Scholar 

  34. Wang, J.-Z.; Zhong, C.; Wexler, D.; Idris, N. H.; Wang, Z. X.; Chen, L. Q.; Liu, H. K. Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries. Chem.—Eur. J. 2011, 17, 661–667.

    Article  Google Scholar 

  35. Jiao, J. Q.; Tang, J. G.; Gao, W.; Kuang, D. B.; Tong, Y. X.; Chen, L. P. Plasmonic silver nanoparticles matched with vertically aligned nitrogen-doped titanium dioxide nanotube arrays for enhanced photoelectrochemical activity. J. Power Sources 2015, 274, 464–470.

    Article  Google Scholar 

  36. Chen, Y. J.; Xiao, G.; Wang, T. S.; Ouyang, Q. Y.; Qi, L. H.; Ma, Y.; Gao, P.; Zhu, C.-L.; Cao, M. S.; Jin, H. B. Porous Fe3O4/carbon core/shell nanorods: Synthesis and electromagnetic properties. J. Phys. Chem. C 2011, 115, 13603–13608.

    Article  Google Scholar 

  37. Wang, Q. H.; Jiao, L. F.; Du, H. M.; Wang, Y. J.; Yuan, H. T. Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. J. Power Sources 2014, 245, 101–106.

    Article  Google Scholar 

  38. Chen, D. Y.; Ji, G.; Ma, Y.; Lee, J. Y.; Lu, J. M. Grapheneencapsulated hollow Fe3O4 nanoparticle aggregates as a high-performance anode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2011, 3, 3078–3083.

    Article  Google Scholar 

  39. Luo, J. S.; Liu, J. L.; Zeng, Z. Y.; Ng, C. F.; Ma, L. J.; Zhang, H.; Lin, J. Y.; Shen, Z. X.; Fan, H. J. Threedimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 2013, 13, 6136–6143.

    Article  Google Scholar 

  40. Ji, L. W.; Tan, Z. K.; Kuykendall, T. R.; Aloni, S.; Xun, S. D.; Lin, E.; Battaglia, V.; Zhang, Y. Q. Fe3O4 nanoparticleintegrated graphene sheets for high-performance half and full lithium ion cells. Phys. Chem. Chem. Phys. 2011, 13, 7170–7177.

    Article  Google Scholar 

  41. Jing, L. Y.; Fu, A. P.; Li, H. L.; Liu, J. Q.; Guo, P. Z.; Wang, Y. Q.; Zhao, X. S. One-step solvothermal preparation of Fe3O4/graphene composites at elevated temperature and their application as anode materials for lithium-ion batteries. RSC Adv. 2014, 4, 59981–59989.

    Article  Google Scholar 

  42. Li, N.; Chen, Z. Q.; Ren, W. C.; Li, F.; Cheng, H. M. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl. Acad. Sci. USA 2012, 109, 17360–17365.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiqing Jiao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, J., Qiu, W., Tang, J. et al. Synthesis of well-defined Fe3O4 nanorods/N-doped graphene for lithium-ion batteries. Nano Res. 9, 1256–1266 (2016). https://doi.org/10.1007/s12274-016-1021-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1021-1

Keywords

Navigation