Skip to main content
Log in

Influence of carrier concentration on the resistive switching characteristics of a ZnO-based memristor

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Sandwich-style memristor devices were synthesized by electrochemical deposition with a ZnO film serving as the active layer between Al-doped ZnO (AZO) and Au electrodes. The carrier concentration of the ZnO films is controlled by adding HNO3 during the growth process. A resulting increase in carrier concentration from 1017 to 1019 cm–3 was observed, along with a corresponding drop in the on–off ratio from 6,437% to 100%. The resistive switching characteristics completely disappeared when the carrier concentration was above 1019 cm–3, making it unsuitable for a memory device. The decreasing switching ratio is attributed to a reduction in the driving force for oxygen vacancy drift. Systematic analysis of the migration of oxygen vacancies is presented, including the concentration gradient and electrical potential gradient. Such oxygen vacancy migration dynamics provide insight into the mechanisms of the oxygen vacancy drift and provide valuable information for industrial production of memristor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, D.; Park, J.; Park, J.; Woo, J.; Cha, E.; Lee, S.; Moon, K.; Song, J.; Koo, Y.; Hwang, H. Structurally engineered stackable and scalable 3D titanium-oxide switching devices for high-density nanoscale memory. Adv. Mater. 2015, 27, 59–64.

    Article  Google Scholar 

  2. Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833–840.

    Article  Google Scholar 

  3. Yang, J. J.; Pickett, M. D.; Li, X. M.; Ohlberg, D. A. A.; Stewart, D. R.; Williams, R. S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 2008, 3, 429–433.

    Article  Google Scholar 

  4. Yang, Y. C.; Pan, F.; Liu, Q.; Liu, M.; Zeng, F. Fully roomtemperature- fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett. 2009, 9, 1636–1643.

    Article  Google Scholar 

  5. Lee, M.-J.; Lee, C. B.; Lee, D.; Lee, S. R.; Chang, M.; Hur, J. H.; Kim, Y.-B.; Kim, C.-J.; Seo, D. H.; Seo, S. et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x /TaO2−x bilayer structures. Nat. Mater. 2011, 10, 625–630.

    Article  Google Scholar 

  6. Bae, Y. C.; Lee, A. R.; Lee, J. B.; Koo, J. H.; Kwon, K. C.; Park, J. G.; Im, H. S.; Hong, J. P. Oxygen ion drift-induced complementary resistive switching in homo TiOx/TiOy/TiOx and hetero TiOx/TiON/TiOx triple multilayer frameworks. Adv. Funct. Mater. 2012, 22, 709–716.

    Article  Google Scholar 

  7. Gergel-Hackett, N.; Tedesco, J. L.; Richter, C. A. Memristors with flexible electronic applications. Proc. IEEE 2012, 100, 1971–1978.

    Article  Google Scholar 

  8. Raeis Hosseini, N.; Lee, J.-S. Resistive switching memory based on bioinspired natural solid polymer electrolytes. ACS Nano 2015, 9, 419–426.

    Article  Google Scholar 

  9. Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. The missing memristor found. Nature 2008, 453, 80–83.

    Article  Google Scholar 

  10. Pershin, Y. V.; Di Ventra, M. Memory effects in complex materials and nanoscale systems. Adv. Phys. 2011, 60, 145–227.

    Article  Google Scholar 

  11. Yang, J. J.; Strukov, D. B.; Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 2012, 8, 13–24.

    Article  Google Scholar 

  12. Kwon, D.-H.; Kim, K. M.; Jang, J. H.; Jeon, J. M.; Lee, M. H.; Kim, G. H.; Li, X.-S.; Park, G.-S.; Lee, B.; Han, S. et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 2010, 5, 148–153.

    Article  Google Scholar 

  13. Chang, S. H.; Kim, J.; Phatak, C.; D'Aquila, K.; Kim, S. K.; Kim, J.; Song, S. J.; Hwang, C. S.; Eastman, J. A.; Freeland, J. W. et al. X-ray irradiation induced reversible resistance change in Pt/TiO2/Pt cells. ACS Nano 2014, 8, 1584–1589.

    Article  Google Scholar 

  14. Park, G. S.; Kim, Y. B.; Park, S. Y.; Li, X. S.; Heo, S.; Lee, M. J.; Chang, M.; Kwon, J. H.; Kim, M.; Chung, U. I. et al. In situ observation of filamentary conducting channels in an asymmetric Ta2O5–x /TaO2–x bilayer structure. Nat. Commun. 2013, 4, 2382.

    Google Scholar 

  15. Kim, S.; Choi, S.; Lee, J.; Lu, W. D. Tuning resistive switching characteristics of tantalum oxide memristors through Si doping. ACS Nano 2014, 8, 10262–10269.

    Article  Google Scholar 

  16. He, L.; Liao, Z.-M.; Wu, H.-C.; Tian, X.-X.; Xu, D.-S.; Cross, G. L. W.; Duesberg, G. S.; Shvets, I. V.; Yu, D.-P. Memory and threshold resistance switching in Ni/NiO core-shell nanowires. Nano Lett. 2011, 11, 4601–4606.

    Article  Google Scholar 

  17. Zhang, X.-M.; Lu, M.-Y.; Zhang, Y.; Chen, L.-J.; Wang, Z. L. Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Adv. Mater. 2009, 21, 2767–2770.

    Article  Google Scholar 

  18. Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.

    Article  Google Scholar 

  19. Yang, Y.; Guo, W.; Wang, X. Q.; Wang, Z. Z.; Qi, J. J.; Zhang, Y. Size dependence of dielectric constant in a single pencil-like ZnO nanowire. Nano Lett. 2012, 12, 1919–1922.

    Article  Google Scholar 

  20. Chen, C.; Pan, F.; Wang, Z. S.; Yang, J.; Zeng, F. Bipolar resistive switching with self-rectifying effects in Al/ZnO/Si structure. J. Appl. Phys. 2012, 111, 013702.

    Article  Google Scholar 

  21. Huang, T. H.; Yang, P. K.; Chang, W. Y.; Chien, J. F.; Kang, C. F.; Chen, M. J.; He, J. H. Eliminating surface effects via employing nitrogen doping to significantly improve the stability and reliability of ZnO resistive memory. J. Mater. Chem. C 2013, 1, 7593–7597.

    Article  Google Scholar 

  22. Zhang, J.; Yang, H.; Zhang, Q.-L.; Dong, S. R.; Luo, J. K. Structural, optical, electrical and resistive switching properties of ZnO thin films deposited by thermal and plasma-enhanced atomic layer deposition. Appl. Surf. Sci. 2013, 282, 390–395.

    Article  Google Scholar 

  23. Chang, W.-Y.; Lai, Y.-C.; Wu, T.-B.; Wang, S.-F.; Chen, F.; Tsai, M.-J. Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications. Appl. Phys. Lett. 2008, 92, 022110.

    Article  Google Scholar 

  24. Huang, C.-H.; Huang, J.-S.; Lai, C.-C.; Huang, H.-W.; Lin, S.-J.; Chueh, Y.-L. Manipulated transformation of filamentary and homogeneous resistive switching on ZnO thin film memristor with controllable multistate. ACS Appl. Mater. Interfaces 2013, 5, 6017–6023.

    Article  Google Scholar 

  25. Younis, A.; Chu, D. W.; Lin, X.; Lee, J.; Li, S. Bipolar resistive switching in p-type Co3O4 nanosheets prepared by electrochemical deposition. Nanoscale Res. Lett. 2013, 8, 36.

    Article  Google Scholar 

  26. Dai, S. X.; Li, Y. Y.; Du, Z. L.; Carter, K. R. Electrochemical deposition of ZnO hierarchical nanostructures from hydrogel coated electrodes. J. Electrochem. Soc. 2013, 160, D156–D162.

    Article  Google Scholar 

  27. Lampert, M. A. Simplified theory of space-charge-limited currents in an insulator with traps. Phys. Rev. 1956, 103, 1648–1656.

    Article  Google Scholar 

  28. Guo, M.; Yang, C. Y.; Zhang, M.; Zhang, Y. J.; Ma, T.; Wang, X. D.; Wang, X. D. Effects of preparing conditions on the electrodeposition of well-aligned ZnO nanorod arrays. Electrochim. Acta 2008, 53, 4633–4641.

    Article  Google Scholar 

  29. Yang, X. Y.; Wolcott, A.; Wang, G. M.; Sobo, A.; Fitzmorris, R. C.; Qian, F.; Zhang, J. Z.; Li, Y. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2009, 9, 2331–2336.

    Article  Google Scholar 

  30. Hsieh, P. T.; Chen, Y. C.; Kao, K. S.; Wang, C. M. Luminescence mechanism of ZnO thin film investigated by XPS measurement. Appl. Phys. A 2007, 90, 317–321.

    Article  Google Scholar 

  31. Tappertzhofen, S.; Linn, E.; Bottger, U.; Waser, R.; Valov, I. Nanobattery effect in RRAMs-implications on device stability and endurance. IEEE Electr. Device L. 2014, 35, 208–210.

    Article  Google Scholar 

  32. Valov, I.; Linn, E.; Tappertzhofen, S.; Schmelzer, S.; van den Hurk, J.; Lentz, F.; Waser, R. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 2013, 4, 1771.

    Article  Google Scholar 

  33. Sun, Y. H.; Yan, X. Q.; Zheng, X.; Liu, Y. C.; Zhao, Y. G.; Shen, Y. W.; Liao, Q. L.; Zhang, Y. High on-off ratio improvement of ZnO-based forming-free memristor by surface hydrogen annealing. ACS Appl. Mater. Interfaces 2015, 7, 7382–7388.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoqin Yan or Yue Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Yan, X., Zheng, X. et al. Influence of carrier concentration on the resistive switching characteristics of a ZnO-based memristor. Nano Res. 9, 1116–1124 (2016). https://doi.org/10.1007/s12274-016-1006-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1006-0

Keywords

Navigation