Skip to main content
Log in

Confined growth of Li4Ti5O12 nanoparticles in nitrogen-doped mesoporous graphene fibers for high-performance lithium-ion battery anodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanomaterials with electrochemical activity are always suffering from aggregations, particularly during the high-temperature synthesis processes, which will lead to decreased energy-storage performance. Here, hierarchically structured lithium titanate/nitrogen-doped porous graphene fiber nanocomposites were synthesized by using confined growth of Li4Ti5O12 (LTO) nanoparticles in nitrogen-doped mesoporous graphene fibers (NPGF). NPGFs with uniform pore structure are used as templates for hosting LTO precursors, followed by high-temperature treatment at 800 °C under argon (Ar). LTO nanoparticles with size of several nanometers are successfully synthesized in the mesopores of NPGFs, forming nanostructured LTO/NPGF composite fibers. As an anode material for lithium-ion batteries, such nanocomposite architecture offers effective electron and ion transport, and robust structure. Such nanocomposites in the electrodes delivered a high reversible capacity (164 mAh·g–1 at 0.3 C), excellent rate capability (102 mAh·g–1 at 10 C), and long cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

    Article  Google Scholar 

  2. Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430.

    Article  Google Scholar 

  3. Yi, T.-F.; Yang, S.-Y.; Xie, Y. Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries. J. Mater. Chem. A 2015, 3, 5750–5777.

    Article  Google Scholar 

  4. Naoi, K.; Naoi, W.; Aoyagi, S.; Miyamoto, J.-I.; Kamino, T. New generation “nanohybrid supercapacitor”. Acc. Chem. Res. 2013, 46, 1075–1083.

    Article  Google Scholar 

  5. Wang, Y.-Q.; Gu, L.; Guo, Y.-G.; Li, H.; He, X.-Q.; Tsukimoto, S.; Ikuhara, Y.; Wan, L.-J. Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 2012, 134, 7874–7879.

    Article  Google Scholar 

  6. Lim, J.; Choi, E.; Mathew, V.; Kim, D.; Ahn, D.; Gim, J.; Kang, S.-H.; Kim, J. Enhanced high-rate performance of Li4Ti5O12 nanoparticles for rechargeable Li-ion batteries. J. Electrochem. Soc. 2011, 158, A275–A280.

    Article  Google Scholar 

  7. Jiang, C. H.; Ichihara, M.; Honma, I.; Zhou, H. S. Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode. Electrochim. Acta 2007, 52, 6470–6475.

    Article  Google Scholar 

  8. Haridas, A. K.; Sharma, C. S.; Rao, T. N. Donut-shaped Li4Ti5O12 structures as a high performance anode material for lithium ion batteries. Small 2015, 11, 290–294.

    Article  Google Scholar 

  9. Zhang, Y. L.; Hu, X. B.; Xu, Y. L.; Ding, M. L. Recent progress of Li4Ti5O12 with different morphologies as anode material. Acta Chim. Sin. 2013, 71, 1341–1353.

    Article  Google Scholar 

  10. Jung, H.-G.; Myung, S.-T.; Yoon, C. S.; Son, S.-B.; Oh, K. H.; Amine, K.; Scrosati, B.; Sun, Y.-K. Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy Environ. Sci. 2011, 4, 1345–1351.

    Article  Google Scholar 

  11. Ganapathy, S.; Wagemaker, M. Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion. ACS Nano 2012, 6, 8702–8712.

    Article  Google Scholar 

  12. Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.

    Article  Google Scholar 

  13. Cheng, J.; Che, R. C.; Liang, C. Y.; Liu, J. W.; Wang, M.; Xu, J. J. Hierarchical hollow Li4Ti5O12 urchin-like microspheres with ultra-high specific surface area for high rate lithium ion batteries. Nano Res. 2014, 7, 1043–1053.

    Article  Google Scholar 

  14. Wang, X. F.; Liu, B.; Hou, X. J.; Wang, Q. F.; Li, W. W.; Chen, D.; Shen, G. Z. Ultralong-life and high-rate web-like Li4Ti5O12 anode for high-performance flexible lithium-ion batteries. Nano Res. 2014, 7, 1073–1082.

    Article  Google Scholar 

  15. Xu, H. H.; Hu, X. L.; Sun, Y. M.; Luo, W.; Chen, C. J.; Liu, Y.; Huang, Y. H. Highly porous Li4Ti5O12/C nanofibers for ultrafast electrochemical energy storage. Nano Energy 2014, 10, 163–171.

    Article  Google Scholar 

  16. Feckl, J. M.; Fominykh, K.; Döblinger, M.; Fattakhova-Rohlfing, D.; Bein, T. Nanoscale porous framework of lithium titanate for ultrafast lithium insertion. Angew. Chem., Int. Ed. 2012, 51, 7459–7463.

    Article  Google Scholar 

  17. Shen, L. F.; Uchaker, E.; Zhang, X. G.; Cao, G. Z. Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries. Adv. Mater. 2012, 24, 6502–6506.

    Article  Google Scholar 

  18. Chen, S.; Xin, Y. L.; Zhou, Y. Y.; Ma, Y. R.; Zhou, H. H.; Qi, L. M. Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life. Energy Environ. Sci. 2014, 7, 1924–1930.

    Article  Google Scholar 

  19. Liu, J.; Song, K. P.; van Aken, P. A.; Maier, J.; Yu, Y. Self-supported Li4Ti5O12-C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. Nano Lett. 2014, 14, 2597–2603.

    Article  Google Scholar 

  20. Kang, E.; Jung, Y. S.; Kim, G. H.; Chun, J.; Wiesner, U.; Dillon, A. C.; Kim, J. K.; Lee, J. Highly improved rate capability for a lithium-ion battery nano-Li4Ti5O12 negative electrode via carbon-coated mesoporous uniform pores with a simple self-assembly method. Adv. Funct. Mater. 2011, 21, 4349–4357.

    Article  Google Scholar 

  21. Sorensen, E. M.; Barry, S. J.; Jung, H.-K.; Rondinelli, J. M.; Vaughey, J. T.; Poeppelmeier, K. R. Three-dimensionally ordered macroporous Li4Ti5O12: Effect of wall structure on electrochemical properties. Chem. Mater. 2006, 18, 482–489.

    Article  Google Scholar 

  22. Kubiak, P.; Garcia, A.; Womes, M.; Aldon, L.; Olivier- Fourcade, J.; Lippens, P.-E.; Jumas, J.-C. Phase transition in the spinel Li4Ti5O12 induced by lithium insertion: Influence of the substitutions Ti/V, Ti/Mn, Ti/Fe. J. Power Sources 2003, 119–121, 626–630.

    Article  Google Scholar 

  23. Chen, C. H.; Vaughey, J. T.; Jansen, A. N.; Dees, D. W.; Kahaian, A. J.; Goacher, T.; Thackeray, M. M. Studies of Mg-substituted Li4-x Mg x Ti5O12 spinel electrodes (0 ≤ x ≤ 1) for lithium batteries. J. Electrochem. Soc. 2001, 148, A102–A104.

    Article  Google Scholar 

  24. Li, B. H.; Han, C. P.; He, Y.-B.; Yang, C.; Du, H. D.; Yang, Q.-H.; Kang, F. Y. Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy Environ. Sci. 2012, 5, 9595–9602.

    Article  Google Scholar 

  25. Zhu, G.-N.; Wang, C.-X.; Xia, Y.-Y. A comprehensive study of effects of carbon coating on Li4Ti5O12 anode material for lithium-ion batteries. J. Electrochem. Soc. 2011, 158, A102–A109.

    Google Scholar 

  26. Zhang, Z. H.; Li, G. C.; Peng, H. R.; Chen, K. Z. Hierarchical hollow microspheres assembled from N-doped carbon coated Li4Ti5O12 nanosheets with enhanced lithium storage properties. J. Mater. Chem A 2013, 1, 15429–15434.

    Article  Google Scholar 

  27. Pan, H. L.; Zhao, L.; Hu, Y.-S.; Li, H.; Chen, L. Q. Improved Li-storage performance of Li4Ti5O12 coated with C-N compounds derived from pyrolysis of urea through a low-temperature approach. ChemSusChem 2012, 5, 526–529.

    Article  Google Scholar 

  28. Shen, L. F.; Zhang, X. G.; Uchaker, E.; Yuan, C. Z.; Cao, G. Z. Li4Ti5O12 nanoparticles embedded in a mesoporous carbon matrix as a superior anode material for high rate lithium ion batteries. Adv. Energy Mater. 2012, 2, 691–698.

    Article  Google Scholar 

  29. Shen, L. F.; Li, H. S.; Uchaker, E.; Zhang, X. G.; Cao, G. Z. General strategy for designing core–shell nanostructured materials for high-power lithium ion batteries. Nano Lett. 2012, 12, 5673–5678.

    Article  Google Scholar 

  30. Kim, K.-T.; Yu, C.-Y.; Yoon, C. S.; Kim, S.-J.; Sun, Y.-K.; Myung, S.-T. Carbon-coated Li4Ti5O12 nanowires showing high rate capability as an anode material for rechargeable sodium batteries. Nano Energy 2015, 12, 725–734.

    Article  Google Scholar 

  31. Li, H. Q.; Zhou, H. S. Enhancing the performances of Liion batteries by carbon-coating: Present and future. Chem. Commun. 2012, 48, 1201–1217.

    Article  Google Scholar 

  32. Yuan, T.; Cai, R.; Shao, Z. P. Different effect of the atmospheres on the phase formation and performance of Li4Ti5O12 prepared from ball-milling-assisted solid-phase reaction with pristine and carbon-precoated TiO2 as starting materials. J. Phys. Chem. C 2011, 115, 4943–4952.

    Article  Google Scholar 

  33. Jia, X. L.; Kan, Y. F.; Zhu, X.; Ning, G. Q.; Lu, Y. F.; Wei, F. Building flexible Li4Ti5O12/CNT lithium-ion battery anodes with superior rate performance and ultralong cycling stability. Nano Energy 2014, 10, 344–352.

    Article  Google Scholar 

  34. Yuan, T.; Li, W.-T.; Zhang, W. M.; He, Y.-S.; Zhang, C. M.; Liao, X.-Z.; Ma, Z.-F. One-pot spray-dried graphene sheetsencapsulated nano-Li4Ti5O12 microspheres for a hybrid BatCap system. Ind. Eng. Chem. Res. 2014, 53, 10849–10857.

    Article  Google Scholar 

  35. Zhu, G.-N.; Liu, H.-J.; Zhuang, J.-H.; Wang, C.-X.; Wang, Y.-G.; Xia, Y.-Y. Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Energy Environ. Sci. 2011, 4, 4016–4022.

    Article  Google Scholar 

  36. Vujkovic, M.; Stojkovic, I.; Mitric, M.; Mentus, S.; Cvjeticanin, N. Hydrothermal synthesis of Li4Ti5O12/C nanostructured composites: Morphology and electrochemical performance. Mater. Res. Bull. 2013, 48, 218–223.

    Article  Google Scholar 

  37. Liu, T. T.; Ni, H. F.; Song, W.-L.; Fan, L.-Z. Enhanced electrochemical performance of Li4Ti5O12 as anode material for lithium-ion batteries with different carbons as support. J. Alloys Compd. 2015, 646, 189–194.

    Article  Google Scholar 

  38. Shi, Y.; Wen, L.; Li, F.; Cheng, H.-M. Nanosized Li4Ti5O12/ graphene hybrid materials with low polarization for high rate lithium ion batteries. J. Power Sources 2011, 196, 8610–8617.

    Article  Google Scholar 

  39. Li, N.; Chen, Z. P.; Ren, W. C.; Li, F.; Cheng, H.-M. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl. Acad. Sci. USA 2012, 109, 17360–17365.

    Article  Google Scholar 

  40. Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

    Article  Google Scholar 

  41. Zhao, B. T.; Ran, R.; Liu, M. L.; Shao, Z. P. A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives. Mater. Sci. Eng.: R 2015, 98, 1–71.

    Article  Google Scholar 

  42. Naoi, K.; Ishimoto, S.; Isobe, Y.; Aoyagi, S. High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors. J. Power Sources 2010, 195, 6250–6254.

    Article  Google Scholar 

  43. Tang, Y. F.; Huang, F. Q.; Zhao, W.; Liu, Z. Q.; Wan, D. Y. Synthesis of graphene-supported Li4Ti5O12 nanosheets for high rate battery application. J. Mater. Chem. 2012, 22, 11257–11260.

    Article  Google Scholar 

  44. Ni, H. F.; Fan, L.-Z. Nano-Li4Ti5O12 anchored on carbon nanotubes by liquid phase deposition as anode material for high rate lithium-ion batteries. J. Power Sources 2012, 214, 195–199.

    Article  Google Scholar 

  45. Shi, Y.; Gao, J.; Abruñ a, H. D.; Liu, H. K.; Li, H. J.; Wang, J. Z.; Wu, Y. P. Rapid synthesis of Li4Ti5O12/graphene composite with superior rate capability by a microwaveassisted hydrothermal method. Nano Energy 2014, 8, 297–304.

    Article  Google Scholar 

  46. Shen, L. F.; Yuan, C. Z.; Luo, H. J.; Zhang, X. G.; Yang, S. D.; Lu, X. J. In situ synthesis of high-loading Li4Ti5O12- graphene hybrid nanostructures for high rate lithium ion batteries. Nanoscale 2011, 3, 572–574.

    Article  Google Scholar 

  47. Jia, X. L.; Zhang, G. L.; Wang, T. H.; Zhu, X.; Yang, F.; Li, Y. F.; Lu, Y. F.; Wei, F. Monolithic nitrogen-doped graphene frameworks as ultrahigh-rate anodes for lithium ion batteries. J. Mater. Chem. A 2015, 3, 15738–15744.

    Article  Google Scholar 

  48. Zhao, L.; Hu, Y.-S.; Li, H.; Wang, Z. X.; Chen, L. Q. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv. Mater. 2011, 23, 1385–1388.

    Article  Google Scholar 

  49. Jia, X. L.; Cheng, Y. H.; Lu, Y. F.; Wei, F. Building robust carbon nanotube-interweaved-nanocrystal architecture for high-performance anode materials. ACS Nano 2014, 8, 9265–9273.

    Article  Google Scholar 

  50. Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P.-L.; Tolbert, S. H.; Abruñ a, H. D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522.

    Article  Google Scholar 

  51. Xu, G. B.; Li, W.; Yang, L. W.; Wei, X. L.; Ding, J. W.; Zhong, J. X.; Chu, P. K. Highly-crystalline ultrathin Li4Ti5O12 nanosheets decorated with silver nanocrystals as a highperformance anode material for lithium ion batteries. J. Power Sources 2015, 276, 247–254.

    Article  Google Scholar 

  52. Yang, Y. C.; Qiao, B. H.; Yang, X. M.; Fang, L. B.; Pan, C. C.; Song, W. X.; Hou, H. S.; Ji, X. B. Lithium titanate tailored by cathodically induced graphene for an ultrafast lithium ion battery. Adv. Funct. Mater. 2014, 24, 4349–4356.

    Article  Google Scholar 

  53. Rakhi, R. B.; Chen, W.; Cha, D.; Alshareef, H. N. Nanostructured ternary electrodes for energy-storage applications. Adv. Energy Mater. 2012, 2, 381–389.

    Article  Google Scholar 

  54. Jia, X. L.; Chen, Z.; Suwarnasarn, A.; Rice, L.; Wang, X. L.; Sohn, H. S.; Zhang, Q.; Wu, B. M.; Wei, F.; Lu, Y. F. Highperformance flexible lithium-ion electrodes based on robust network architecture. Energy Environ. Sci. 2012, 5, 6845–6849.

    Article  Google Scholar 

  55. Song, M.-S.; Benayad, A.; Choi, Y.-M.; Park, K.-S. Does Li4Ti5O12 need carbon in lithium ion batteries? Carbon-free electrode with exceptionally high electrode capacity. Chem. Commun. 2012, 48, 516–518.

    Article  Google Scholar 

  56. Young, D.; Ransil, A.; Amin, R.; Li, Z.; Chiang, Y.-M. Electronic conductivity in the Li4/3Ti5/3O4–Li7/3Ti5/3O4 system and variation with state-of-charge as a Li battery anode. Adv. Energy Mater. 2013, 3, 1125–1129.

    Article  Google Scholar 

  57. Zhang, Z. H.; Li, G. C.; Peng, H. R.; Chen, K. Z. Hierarchical hollow microspheres assembled from N-doped carbon coated Li4Ti5O12 nanosheets with enhanced lithium storage properties. J. Mater. Chem. A 2013, 1, 15429–15434.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunfeng Lu or Fei Wei.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Lu, Y. & Wei, F. Confined growth of Li4Ti5O12 nanoparticles in nitrogen-doped mesoporous graphene fibers for high-performance lithium-ion battery anodes. Nano Res. 9, 230–239 (2016). https://doi.org/10.1007/s12274-016-1001-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1001-5

Keywords

Navigation