Skip to main content
Log in

Encapsulation of metal layers within metal–organic frameworks as hybrid thin films for selective catalysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A facile encapsulation strategy for the preparation of metal layer/metal–organic framework (metal/MOF) hybrid thin films, by alternately growing MOF thin films and sputter-coating metal layers, is reported. The controlled species of the MOF thin films and metal layers, as well as the designed thickness of MOF thin films, endow the resulting hybrid thin films with improved functional and design flexibility. Importantly, the metal/MOF hybrid thin films, with well-defined sandwich structures, exhibit excellent selective catalytic activity, derived from MOFs acting as molecular sieves and the metal layers providing active sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sanchez, C.; Shea, K. J.; Kitagawa, S. Recent progress in hybrid materials science. Chem. Soc. Rev. 2011, 40, 471–472.

    Article  Google Scholar 

  2. Kaushik, A.; Kumar, R.; Arya, S. K.; Nair, M.; Malhotra, B. D.; Bhansali, S. Organic–inorganic hybrid nanocompositebased gas sensors for environmental monitoring. Chem. Rev. 2015, 115, 4571–4606.

    Article  Google Scholar 

  3. Laberty-Robert, C.; Vallé, K.; Pereira, F.; Sanchez, C. Design and properties of functional hybrid organic–inorganic membranes for fuel cells. Chem. Soc. Rev. 2011, 40, 961–1005.

    Article  Google Scholar 

  4. Soler-Illia, G. J. A. A.; Azzaroni, O. Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. Chem. Soc. Rev. 2011, 40, 1107–1150.

    Article  Google Scholar 

  5. Díaz, U.; Brunel, D.; Corma, A. Catalysis using multifunctional organosiliceous hybrid materials. Chem. Soc. Rev. 2013, 42, 4083–4097.

    Article  Google Scholar 

  6. Shi, J. F.; Jiang, Y. J.; Wang, X. L.; Wu, H.; Yang, D.; Pan, F. S.; Su, Y. L.; Jiang, Z. Y. Design and synthesis of organic–inorganic hybrid capsules for biotechnological applications. Chem. Soc. Rev. 2014, 43, 5192–5210.

    Article  Google Scholar 

  7. Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714.

    Article  Google Scholar 

  8. Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 2008, 37, 191–214.

    Article  Google Scholar 

  9. Horike, S.; Shimomura, S.; Kitagawa, S. Soft porous crystals. Nat. Chem. 2009, 1, 695–704.

    Article  Google Scholar 

  10. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 2013, 341, 123044.

    Article  Google Scholar 

  11. Zhu, Q.-L.; Xu, Q. Metal–organic framework composites. Chem. Soc. Rev. 2014, 43, 5468–5512.

    Article  Google Scholar 

  12. Tan, J.-C.; Civalleri, B. Metal–organic frameworks and hybrid materials: From fundamentals to applications. CrystEngComm 2015, 17, 197–198.

    Article  Google Scholar 

  13. Hu, P.; Zhuang, J.; Chou, L.-Y.; Lee, H. K.; Ling, X. Y.; Chuang, Y.-C.; Tsung, C.-K. Surfactant-directed atomic to mesoscale alignment: Metal nanocrystals encased individually in single-crystalline porous nanostructures. J. Am. Chem. Soc. 2014, 136, 10561–10564.

    Article  Google Scholar 

  14. Rösler, C.; Fischer, R. A. Metal–organic frameworks as hosts for nanoparticles. CrystEngComm 2015, 17, 199–217.

    Article  Google Scholar 

  15. Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310–316.

    Article  Google Scholar 

  16. Li, Y. W.; Yang, R. T. Significantly enhanced hydrogen storage in metal–organic frameworks via spillover. J. Am. Chem. Soc. 2006, 128, 726–727.

    Article  Google Scholar 

  17. Sugikawa, K.; Furukawa, Y.; Sada, K. SERS-active metal–organic frameworks embedding gold nanorods. Chem. Mater. 2011, 23, 3132–3134.

    Article  Google Scholar 

  18. Kuo, C.-H.; Tang, Y.; Chou, L.-Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z. P.; Tsung, C.-K. Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. J. Am. Chem. Soc. 2012, 134, 14345–14348.

    Article  Google Scholar 

  19. Zhang, W. N.; Lu, G.; Cui, C. L.; Liu, Y. Y.; Li, S. Z.; Yan, W. J.; Xing, C.; Chi, Y. R.; Yang, Y. H.; Huo, F. W. A family of metal–organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles. Adv. Mater. 2014, 26, 4056–4060.

    Article  Google Scholar 

  20. Zhang, W. N.; Liu, Y. Y.; Lu, G.; Wang, Y.; Li, S. Z.; Cui, C. L.; Wu, J.; Xu, Z. L.; Tian, D. B.; Huang, W. et al. Mesoporous metal–organic frameworks with size-, shape-, and space-distribution-controlled pore structure. Adv. Mater. 2015, 27, 2923–2929.

    Article  Google Scholar 

  21. Chen, Y.-Z.; Zhou, Y.-X.; Wang, H. W.; Lu, J. L.; Uchida, T.; Xu, Q.; Yu, S.-H.; Jiang, H.-L. Multifunctional PdAg@MIL-101 for one-pot cascade reactions: Combination of host–guest cooperation and bimetallic synergy in catalysis. ACS Catal. 2015, 5, 2062–2069.

    Article  Google Scholar 

  22. Yang, J.; Zhang, F. J.; Lu, H. Y.; Hong, X.; Jiang, H. L.; Wu, Y.; Li, Y. D. Hollow Zn/Co ZIF particles derived from core–shell ZIF-67@ZIF-8 as selective catalyst for the semihydrogenation of acetylene. Angew. Chem., Int. Ed. 2015, 54, 10889–10893.

    Article  Google Scholar 

  23. Wang, L.; Feng, X.; Ren, L. T.; Piao, Q. H.; Zhong, J. Q.; Wang, Y. B.; Li, H. W.; Chen, Y. F.; Wang, B. Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI. J. Am. Chem. Soc. 2015, 137, 4920–4923.

    Article  Google Scholar 

  24. Buso, D.; Jasieniak, J.; Lay, M. D. H.; Schiavuta, P.; Scopece, P.; Laird, J.; Amenitsch, H.; Hill, A. J.; Falcaro, P. Highly luminescent metal–organic frameworks through quantum dot doping. Small 2012, 8, 80–88.

    Article  Google Scholar 

  25. Ricco, R.; Malfatti, L.; Takahashi, M.; Hill, A. J.; Falcaro, P. Applications of magnetic metal–organic framework composites. J. Mater. Chem. A 2013, 1, 13033–13045.

    Article  Google Scholar 

  26. Della Rocca, J.; Liu, D. M.; Lin, W. B. Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 2011, 44, 957–968.

    Article  Google Scholar 

  27. Lykourinou, V.; Chen, Y.; Wang, X.-S.; Meng, L.; Hoang, T.; Ming, L.-J.; Musselman, R. L.; Ma, S. Q. Immobilization of Mp-11 into a mesoporous metal–organic framework, Mp-11@mesoMOF: A new platform for enzymatic catalysis. J. Am. Chem. Soc. 2011, 133, 10382–10385.

    Article  Google Scholar 

  28. Bétard, A.; Fischer, R. A. Metal–organic framework thin films: From fundamentals to applications. Chem. Rev. 2012, 112, 1055–1083.

    Article  Google Scholar 

  29. Shekhah, O.; Liu, J.; Fischer, R. A.; Wöll, C. MOF thin films: Existing and future applications. Chem. Soc. Rev. 2011, 40, 1081–1106.

    Article  Google Scholar 

  30. Falcaro, P.; Ricco, R.; Doherty, C. M.; Liang, K.; Hill, A. J.; Styles, M. J. MOF positioning technology and device fabrication. Chem. Soc. Rev. 2014, 43, 5513–5560.

    Article  Google Scholar 

  31. Stavila, V.; Talin, A. A.; Allendorf, M. D. MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 2014, 43, 5994–6010.

    Article  Google Scholar 

  32. Shekhah, O.; Wang, H.; Zacher, D.; Fischer, R. A.; Wöll, C. Growth mechanism of metal–organic frameworks: Insights into the nucleation by employing a step-by-step route. Angew. Chem., Int. Ed. 2009, 48, 5038–5041.

    Article  Google Scholar 

  33. Makiura, R.; Motoyama, S.; Umemura, Y.; Yamanaka, H.; Sakata, O.; Kitagawa, H. Surface nano-architecture of a metal–organic framework. Nat. Mater. 2010, 9, 565–571.

    Article  Google Scholar 

  34. Guo, H. L.; Zhu, G. S.; Hewitt, I. J.; Qiu, S. L. “Twin copper source” growth of metal–organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. J. Am. Chem. Soc. 2009, 131, 1646–1647.

    Article  Google Scholar 

  35. Lu, G.; Farha, O. K.; Zhang, W. N.; Huo, F. W.; Hupp, J. T. Engineering ZIF-8 thin films for hybrid MOF-based devices. Adv. Mater. 2012, 24, 3970–3974.

    Article  Google Scholar 

  36. Falcaro, P.; Hill, A. J.; Nairn, K. M.; Jasieniak, J.; Mardel, J. I.; Bastow, T. J.; Mayo, S. C.; Gimona, M.; Gomez, D.; Whitfield, H. J. et al. A new method to position and functionalize metal–organic framework crystals. Nat. Commun. 2011, 2, 237.

    Article  Google Scholar 

  37. Shekhah, O.; Arslan, H. K.; Chen, K.; Schmittel, M.; Maul, R.; Wenzel, W.; Wöll, C. Post-synthetic modification of epitaxially grown, highly oriented functionalized MOF thin films. Chem. Commun. 2011, 47, 11210–11212.

    Article  Google Scholar 

  38. Mao, Y. Y.; Li, J. W.; Cao, W.; Ying, Y. L.; Hu, P.; Liu, Y.; Sun, L. W.; Wang, H. T.; Jin, C. H.; Peng, X. S. General incorporation of diverse components inside metal–organic framework thin films at room temperature. Nat. Commun. 2014, 5, 5532.

    Article  Google Scholar 

  39. Zhang, W. N.; Lu, G.; Li, S. Z.; Liu, Y. Y.; Xu, H. B.; Cui, C. L.; Yan, W. J.; Yang, Y. H.; Huo, F. W. Controlled incorporation of nanoparticles in metal–organic framework hybrid thin films. Chem. Commun. 2014, 50, 4296–4298.

    Article  Google Scholar 

  40. Tu, W.-X.; He, B.-L.; Liu, H.-F.; Luo, X.-L.; Liang, X. Catalytic properties of polymer-stabilized colloidal metal nanoparticles synthesized by microwave irradiation. Chinese Journal of Polymer Science (CJPS) 2005, 23, 211–217.

    Article  Google Scholar 

  41. Guo, Z. Y.; Xiao, C. X.; Maligal-Ganesh, R. V.; Zhou, L.; Goh, T. W.; Li, X. L.; Tesfagaber, D.; Thiel, A.; Huang, W. Y. Pt nanoclusters confined within metal–organic framework cavities for chemoselective cinnamaldehyde hydrogenation. ACS Catal. 2014, 4, 1340–1348.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Huang, Danbi Tian or Fengwei Huo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Zhang, W., Weng, J. et al. Encapsulation of metal layers within metal–organic frameworks as hybrid thin films for selective catalysis. Nano Res. 9, 158–164 (2016). https://doi.org/10.1007/s12274-015-0967-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0967-8

Keywords

Navigation