Skip to main content
Log in

Composition- and oxidation-controlled magnetism in ternary FeCoNi nanocrystals

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ternary FeCoNi metallic nanostructures have attracted significant attention due to their high saturation magnetization, unique mechanical properties, and large corrosion resistance. In this study, we report a controlled synthesis of ternary FeCoNi nanocrystals using solution-based epitaxial core–shell nanotechnology. The thickness and stoichiometry of the FeCoNi nanocrystals affect their magnetic characteristics, which can be controlled by a phase transformation-induced tetragonal distortion. Furthermore, surface oxidation of the stoichiometry-controlled FeCoNi nanostructures can drastically enhance their magnetic coercivity (up to 8,881.6 Oe for AuCu–FeCo), and optimize the AuCu–FeCo0.8Ni0.2 performance corresponding to the saturated magnetization of 134.4 emu·g−1 and coercivity of 4,036.7 Oe, which opens the possibility of developing rare-earth free high energy nanomagnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Standley, K. J. Oxide Magnetic Materials; Oxford University Press (Clarendon): Oxford, 1972.

    Google Scholar 

  2. Namai, A.; Yoshikiyo, M.; Yamada, K.; Sakurai, S.; Goto, T.; Yoshida, T.; Miyazaki, T.; Nakajima, M.; Suemoto, T.; Tokoro, H. et al. Hard magnetic ferrite with a gigantic coercivity and high frequency millimetre wave rotation. Nat. Commun. 2012, 3, 1035–1040.

    Article  Google Scholar 

  3. Buschow, K. H. J. Handbook of Magnetic Materials; Elsevier: Oxford, 2012.

    Google Scholar 

  4. Weller, D.; Moser, A.; Folks, L.; Best, M. E.; Lee, W.; Toney, M. F.; Schwickert, M.; Thiele, J. U.; Doerner, M. F. High Ku materials approach to 100 gbits/in2. IEEE Trans. Magn. 2000, 36, 10–15.

    Article  Google Scholar 

  5. Gutfleisch, O.; Willard, M. A.; Brück, E.; Chen, C. H.; Sankar, S. G.; Liu, J. P. Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater. 2011, 23, 821–842.

    Article  Google Scholar 

  6. Cui, W. B.; Takahashi, Y. K.; Hono, K. Nd2Fe14B/FeCo anisotropic nanocomposite films with a large maximum energy product. Adv. Mater. 2012, 24, 6530–6535.

    Article  Google Scholar 

  7. Zhu, B. O.; Chen, K.; Jia, N.; Sun, L.; Zhao, J. M.; Jiang, T.; Feng, Y. J. Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface. Sci. Rep. 2014, 4, 4971.

    Google Scholar 

  8. Reichel, L.; Schultz, L.; Fähler, S. Lattice relaxation studies in strained epitaxial Fe–Co–C films. J. Appl. Phys. 2015, 117, 17C712.

    Article  Google Scholar 

  9. Miura, Y.; Ozaki, S.; Kuwahara, Y.; Tsujikawa, M.; Abe, K.; Shirai, M. The origin of perpendicular magneto-crystalline anisotropy in L10-FeNi under tetragonal distortion. J. Phys.: Condens. Matter 2013, 25, 106005.

    Google Scholar 

  10. Coey, J. M. D. Permanent magnets: Plugging the gap. Scr. Mater. 2012, 67, 524–529.

    Article  Google Scholar 

  11. Ohtsuki, T.; Kojima, T.; Kotsugi, M.; Ohkochi, T.; Mizuguchi, M.; Takanashi, K. Magnetic domain observation of FeCo thin films fabricated by alternate monoatomic layer deposition. J. Appl. Phys. 2014, 115, 043908.

    Article  Google Scholar 

  12. Gong, M. G.; Kirkeminde, A.; Wuttig, M.; Ren, S. Q. Phase transformation-induced tetragonal FeCo nanostructures. Nano Lett. 2014, 14, 6493–6498.

    Article  Google Scholar 

  13. Mibu, K.; Kojima, T.; Mizuguchi, M.; Takanashi, K. Local structure and magnetism of L10-type FeNi alloy films with perpendicular magnetic anisotropy studied through 57Fe nuclear probes. J. Phys. D: Appl. Phys. 2015, 48, 205002.

    Article  Google Scholar 

  14. Shima, T.; Okamura, M.; Mitani, S.; Takanashi, K. Structure and magnetic properties for L10-ordered FeNi films prepared by alternate monatomic layer deposition. J. Magn. Magn. Mater. 2007, 310, 2213–2214.

    Article  Google Scholar 

  15. Mizuguchi, M.; Sekiya, S.; Takanashi, K. Characterization of Cu buffer layers for growth of L10-FeNi thin films. J. Appl. Phys. 2010, 107, 09A716.

    Article  Google Scholar 

  16. Anraku, T.; Sakaihara, I.; Hoshikawa, T.; Taniwaki, M. Phase transitions and thermal expansion behavior in AuCu alloy. Mater. Trans. 2009, 50, 683–688.

    Article  Google Scholar 

  17. Gong, M. G.; Kirkeminde, A.; Skomski, R.; Cui, J.; Ren, S. Q. Template-directed FeCo nanoshells on AuCu. Small 2014, 10, 4118–4122.

    Article  Google Scholar 

  18. Burkert, T.; Nordström, L.; Eriksson, O.; Heinonen, O. Giant magnetic anisotropy in tetragonal FeCo alloys. Phys. Rev. Lett. 2004, 93, 027203.

    Article  Google Scholar 

  19. Li, X. G.; Takanashi, S. Synthesis and magnetic properties of Fe–Co–Ni nanoparticles by hydrogen plasma-metal reaction. J. Magn. Magn. Mater. 2000, 214, 195–203.

    Article  Google Scholar 

  20. Pramanik, S.; Mishra, M. K.; De, G. Crystal structure tailoring of Au–Cu alloy NPs using the embedding film matrix as template. CrystEngComm 2014, 16, 56–63.

    Article  Google Scholar 

  21. Farnan, G. A.; Fu, C. L.; Gai, Z.; Krcmar, M.; Baddorf, A. P.; Zhang, Z. Y.; Shen, J. Electronic stability of magnetic Fe/Co superlattices with monatomic layer alternation. Phys. Rev. Lett. 2003, 91, 226106.

    Article  Google Scholar 

  22. Li, X. G.; Murai, T.; Saito, T.; Takahashi, S. Thermal stability, oxidation behavior and magnetic properties of Fe–Co ultrafine particles prepared by hydrogen plasma-metal reaction. J. Magn. Magn. Mater. 1998, 190, 277–288.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenqiang Ren.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, M., Sakidja, R. & Ren, S. Composition- and oxidation-controlled magnetism in ternary FeCoNi nanocrystals. Nano Res. 9, 831–836 (2016). https://doi.org/10.1007/s12274-015-0962-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0962-0

Keywords

Navigation