Skip to main content
Log in

A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A cost-efficient and stable oxygen evolution electrocatalyst is essential for improving energy storage and conversion efficiencies. Herein, 2D nanosheets with randomly cross-linked CoNi layered double hydroxide (LDH) and small CoO nanocrystals were designed and synthesized via in situ reduction and interfacedirected assembly in air. The formation of CoNi LDH/CoO nanosheets was attributed to the strong extrusion of hydrated metal–oxide clusters driven by the interfacial tension. The obtained loose and porous nanosheets exhibited low crystallinity due to the presence of numerous defects. Owing to the orbital hybridization between metal 3d and O 2p orbitals, and electron transfer between metal atoms through Ni–O–Co, a number of Co and Ni atoms in the CoNi LDH present a high +3 valency. These unique characteristics result in a high density of oxygen evolution reaction (OER) active sites, improving the affinity between OH and catalyst, and resulting in a large accessible surface area and permeable channels for ion adsorption and transport. Therefore, the resulting nanosheets exhibited high catalytic activity towards the OER. The CoNi LDH/CoO featured a low onset potential of 1.48 V in alkaline medium, and required an overpotential of only 300 mV at a current density of 10 mA·cm–2, while displaying good stability in accelerated durability tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katsounaros, I.; Cherevko, S.; Zeradjanin, A. R.; Mayrhofer, K. J. J. Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew. Chem., Int. Ed. 2014, 53, 102–121.

    Article  Google Scholar 

  2. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    Article  Google Scholar 

  3. Zhao, Y. F.; Li, B.; Wang, Q.; Gao, W.; Wang, C. J.; Wei, M.; Evans, D. G.; Duan, X.; O’Hare, D. NiTi-layered double hydroxides nanosheets as efficient photocatalysts for oxygen evolution from water using visible light. Chem. Sci. 2014, 5, 951–958.

    Article  Google Scholar 

  4. Cao, R. G.; Walter, E. D.; Xu, W.; Nasybulin, E. N.; Bhattacharya, P.; Bowden, M. E.; Engelhard, M. H.; Zhang, J.-G. The mechanisms of oxygen reduction and evolution reactions in nonaqueous lithium–oxygen batteries. ChemSusChem 2014, 7, 2436–2440.

    Article  Google Scholar 

  5. Chen, S.; Duan, J. J.; Jaroniec, M.; Qiao, S. Z. Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction. Adv. Mater. 2014, 26, 2925–2930.

    Article  Google Scholar 

  6. Ma, T. Y.; Ran, J. R.; Dai, S.; Jaroniec, M,; Qiao, S. Z. Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: Flexible and reversible oxygen electrodes. Angew. Chem., Int. Ed. 2015, 54, 4646–4650.

    Article  Google Scholar 

  7. Sun, Y. F.; Gao, S.; Lei, F. C.; Liu, J. W.; Liang, L.; Xie, Y. Atomically-thin non-layered cobalt oxide porous sheets for highly efficient oxygen-evolving electrocatalysts. Chem. Sci. 2014, 5, 3976–3982.

    Article  Google Scholar 

  8. Du, S. C.; Ren, Z. Y.; Zhang, J.; Wu, J.; Xi, W.; Zhu, J. Q.; Fu, H. G. Co3O4 nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting. Chem. Commun. 2015, 51, 8066–8069.

    Article  Google Scholar 

  9. Duan, J. J.; Chen, S.; Jaroniec, M.; Qiao, S. Z. Heteroatomdoped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catal. 2015, 5, 5207–5234.

    Article  Google Scholar 

  10. Ren, J. W.; Antonietti, M.; Fellinger, T.-P. Efficient water splitting using a simple Ni/N/C paper electrocatalyst. Adv. Energy Mater. 2015, 5, DOI: 10.1002/aenm.201401660.

  11. Peng, Z.; Jia, D. S.; Al-Enizi, A. M.; Elzatahry, A. A.; Zheng, G. F. From water oxidation to reduction: Homologous Ni–Co based nanowires as complementary water splitting electrocatalysts. Adv. Energy Mater. 2015, 5, DOI: 10.1002/aenm.201402031.

  12. Zheng, Y.; Jiao, Y.; Qiao, S. Z. Engineering of carbonbased electrocatalysts for emerging energy conversion: From fundamentality to functionality. Adv. Mater. 2015, 27, 5372–5378.

    Article  Google Scholar 

  13. Chen, S.; Duan, J. J.; Bian, P. J.; Tang, Y. H.; Zheng, R. K.; Qiao, S. Z. Three-dimensional smart catalyst electrode for oxygen evolution reaction. Adv. Energy Mater. 2015, 5, DOI: 10.1002/aenm.201500936.

  14. Bernicke, M.; Ortel, E.; Reier, T.; Bergmann, A.; de Araujo, J. F.; Strasser, P.; Kraehnert, R. Iridium oxide coatings with templated porosity as highly active oxygen evolution catalysts: Structure–activity relationships. ChemSusChem 2015, 8, 1908–1915.

    Article  Google Scholar 

  15. Danilovic, N.; Subbaraman, R.; Chang, K. C.; Chang, S. H.; Kang, Y. J.; Snyder, J.; Paulikas, A. P.; Strmcnik, D.; Kim, Y. T.; Myers, D. et al. Using surface segregation to design stable Ru–Ir oxides for the oxygen evolution reaction in acidic environments. Angew. Chem., Int. Ed. 2014, 53, 14016–14021.

    Article  Google Scholar 

  16. Meng, Y. T.; Song, W. Q.; Huang, H.; Ren, Z.; Chen, S.-Y.; Suib, S. L. Structure–property relationship of bifunctional MnO2 nanostructures: Highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J. Am. Chem. Soc. 2014, 136, 11452–11464.

    Article  Google Scholar 

  17. Zhao, S. L.; Yin, H. J.; Du, L.; Yin, G. P.; Tang, Z. Y.; Liu, S. Q. Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells. J. Mater. Chem. A 2014, 2, 3719–3724.

    Article  Google Scholar 

  18. Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Yang, S.-H. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

    Article  Google Scholar 

  19. Jin, H. Y.; Wang, J.; Su, D. F.; Wei, Z. Z.; Pang, Z. F.; Wang, Y. In situ cobalt–cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 2015, 137, 2688–2694.

    Article  Google Scholar 

  20. Maiyalagan, T.; Jarvis, K. A.; Therese, S.; Ferreira, P. J.; Manthiram, A. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 2014, 5, 3949.

    Article  Google Scholar 

  21. Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329-12337.

    Article  Google Scholar 

  22. Chen, S.; Duan, J. J.; Ran, J. R.; Jaroniec, M.; Qiao, S. Z. N-doped graphene film-confined nickel nanoparticles as a highly efficient three-dimensional oxygen evolution electrocatalyst. Energy Environ. Sci. 2013, 6, 3693–3699.

    Article  Google Scholar 

  23. Stern, L.-A.; Feng, L. G.; Song, F.; Hu, X. L. Ni2P as a Janus catalyst for water splitting: The oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 2015, 8, 2347–2351.

    Article  Google Scholar 

  24. Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

    Google Scholar 

  25. Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–29.

    Article  Google Scholar 

  26. Grimaud, A.; May, K. J.; Carlton, C. E.; Lee, Y.-L.; Risch, M.; Hong, W. T.; Zhou, J. G.; Yang, S.-H. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 2013, 4, 2439.

    Article  Google Scholar 

  27. Joya, K. S.; Takanabe, K.; de Groot, H. J. M. Surface generation of a cobalt-derived water oxidation electrocatalyst developed in a neutral HCO3-/CO2 system. Adv. Energy Mater. 2014, 4, DOI: 10.1002/aenm.201400252.

  28. Ni, B.; Wang, X. Edge overgrowth of spiral bimetallic hydroxides ultrathin-nanosheets for water oxidation. Chem. Sci. 2015, 6, 3572–3576.

    Article  Google Scholar 

  29. Nai, J. W.; Yin, H. J.; You, T. T.; Zheng, L. R.; Zhang, J.; Wang, P. X.; Jin, Z.; Tian, Y.; Liu, J. Z.; Tang, Z. Y. et al. Efficient electrocatalytic water oxidation by using amorphous Ni–Co double hydroxides nanocages. Adv. Energy Mater. 2015, 5, DOI: 10.1002/aenm.201401880.

  30. Surendranath, Y.; Lutterman, D. A.; Liu, Y.; Nocera, D. G. Nucleation, growth, and repair of a cobalt-based oxygen evolving catalyst. J. Am. Chem. Soc. 2012, 134, 6326–6336.

    Article  Google Scholar 

  31. Bediako, D. K.; Lassalle-Kaiser, B.; Surendranath, Y.; Yano, J.; Yachandra, V. K.; Nocera, D. G. Structure–activity correlations in a nickel-borate oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 6801–6809.

    Article  Google Scholar 

  32. Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 2012, 134, 17253–17261.

    Article  Google Scholar 

  33. Wang, H.-Y.; Hsu, Y.-Y.; Chen, R.; Chan, T.-S.; Chen, H. M.; Liu, B. Ni3+-induced formation of active NiooH on the spinel Ni–Co oxide surface for efficient oxygen evolution reaction. Adv. Energy Mater. 2015, 5, DOI: 10.1002/aenm.201500091.

  34. Zou, X. X.; Goswami, A.; Asefa, T. Efficient noble metal-free (electro)catalysis of water and alcohol oxidations by zinc–cobalt layered double hydroxide. J. Am. Chem. Soc. 2013, 135, 17242–17245.

    Article  Google Scholar 

  35. Li, Y.; Zhang, L.; Xiang, X.; Yan, D. P.; Li, F. Engineering of ZnCo-layered double hydroxide nanowalls toward highefficiency electrochemical water oxidation. J. Mater. Chem. A 2014, 2, 13250–13258.

    Article  Google Scholar 

  36. Zhou, L.-J.; Huang, X. X.; Chen, H.; Jin, P. P.; Li, G.-D.; Zou, X. X. A high surface area flower-like Ni–Fe layered double hydroxide for electrocatalytic water oxidation reaction. Dalton Trans. 2015, 44, 11592–11600.

    Article  Google Scholar 

  37. Yang, Q.; Li, T.; Lu, Z. Y.; Sun, X. M.; Liu, J. F. Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction. Nanoscale 2014, 6, 11789–11794.

    Article  Google Scholar 

  38. Landon, J.; Demeter, E.; Ìnoğlu, N.; Keturakis, C.; Wachs, I. E.; Vasic, R.; Frenkel, A. I.; Kitchin, J. R. Spectroscopic characterization of mixed Fe–Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. ACS Catal. 2012, 2, 1793–1801.

    Article  Google Scholar 

  39. Wang, D. D.; Chen, X.; Evans, D. G.; Yang, W. S. Welldispersed Co3O4/Co2MnO4 nanocomposites as a synergistic bifunctional catalyst for oxygen reduction and oxygen evolution reactions. Nanoscale 2013, 5, 5312–5315.

    Article  Google Scholar 

  40. Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M.-J.; Sokaras, D.; Weng, T.-C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

    Article  Google Scholar 

  41. Long, X.; Xiao, S.; Wang, Z. L.; Zheng, X. L.; Yang, S. H. Co intake mediated formation of ultrathin nanosheets of transition metal LDH—An advanced electrocatalyst for oxygen evolution reaction. Chem. Commun. 2015, 51, 1120–1123.

    Article  Google Scholar 

  42. Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.

    Article  Google Scholar 

  43. Chen, S.; Duan, J. J.; Jaroniec, M.; Qiao, S. Z. Threedimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angew. Chem., Int. Ed. 2013, 52, 13567–13570.

    Article  Google Scholar 

  44. Yu, X. W.; Zhang, M.; Yuan, W. J.; Shi, G. Q. A high-performance three-dimensional Ni–Fe layered double hydroxide/graphene electrode for water oxidation. J. Mater. Chem. A 2015, 3, 6921–6928.

    Article  Google Scholar 

  45. Ma, W.; Ma, R. Z.; Wang, C. X.; Liang, J. B.; Liu, X. H.; Zhou, K. C.; Sasaki, T. A superlattice of alternately stacked Ni–Fe hydroxide nanosheets and graphene for efficient splitting of water. ACS Nano 2015, 9, 1977–1984.

    Article  Google Scholar 

  46. Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7584–7588.

    Article  Google Scholar 

  47. Fan, G. L.; Li, F.; Evans, D. G.; Duan, X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chem. Soc. Rev. 2014, 43, 7040–7066.

    Article  Google Scholar 

  48. Yin, Q. S.; Tan, J. M.; Besson, C.; Geletii, Y. V.; Musaev, D. G.; Kuznetsov, A. E.; Luo, Z.; Hardcastle, K. I.; Hill, C. L. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 2010, 328, 342–345.

    Article  Google Scholar 

  49. Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587–5593.

    Article  Google Scholar 

  50. Surendranath, Y.; Kanan, M. W.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobaltphosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501–16509.

    Article  Google Scholar 

  51. Gerken, J. B.; McAlpin, J. G.; Chen, J. Y. C.; Rigsby, M. L.; Casey, W. H.; Britt R. D.; Stahl, S. S. Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: The thermodynamic basis for catalyst structure, stability, and activity. J. Am. Chem. Soc. 2011, 133, 14431–14442.

    Article  Google Scholar 

  52. Yang, J.; Ying, J. Y. A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis. Nat. Mater. 2009, 8, 683–688.

    Article  Google Scholar 

  53. Zhuang, Z. B.; Peng, Q.; Zhang, B. C.; Li, Y. D. Controllable synthesis of Cu2S nanocrystals and their assembly into a superlattice. J. Am. Chem. Soc. 2008, 130, 10482–10483.

    Article  Google Scholar 

  54. Wang, Y.; Chen, Y. G.; Nan, C. Y.; Li, L. L.; Wang, D. S.; Peng, Q.; Li, Y. D. Phase-transfer interface promoted corrosion from PtNi10 nanoctahedra to Pt4Ni nanoframes. Nano Res. 2015, 8, 140–155.

    Article  Google Scholar 

  55. Du, S. C.; Ren, Z. Y.; Qu, Y.; Wang, J.-Q.; Kong, L. J.; Shi, K. Y.; Bateer, B. H.; Fu, H. G. Free-standing ultrathin cobalt nanosheets synthesized by means of in situ reduction and interface-directed assembly and their magnetic properties. ChemPlusChem 2013, 78, 481–485.

    Article  Google Scholar 

  56. Zhang, X. D.; Xie, Y. Recent advances in free-standing two-dimensional crystals with atomic thickness: Design, assembly and transfer strategies. Chem. Soc. Rev. 2013, 42, 8187–8199.

    Article  Google Scholar 

  57. Liu, H. W.; Cheng, H.; Lyu, M. J.; Fan, S. J.; Liu, Q. H.; Zhang, W. S.; Zhi, Y. D.; Wang, C. M.; Xiao, C.; Wei, S. Q. et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 2014, 136, 15670–15675.

    Article  Google Scholar 

  58. Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541.

    Article  Google Scholar 

  59. Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.

    Article  Google Scholar 

  60. Yin, H. J.; Zhao, S. L.; Zhao, K.; Muqsit, A.; Tang, H. J.; Chang, L.; Zhao, H. J.; Gao, Y.; Tang, Z. Y. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commum. 2015, 6, 6430.

    Article  Google Scholar 

  61. Kong, L. J.; Ren, Z. Y.; Zheng, N. N.; Du, S. C.; Wu, J.; Tang, J. L.; Fu, H. G. Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection. Nano Res. 2015, 8, 469–480.

    Article  Google Scholar 

  62. Lu, X. Y.; Ng, Y. H.; Zhao, C. Gold nanoparticles embedded within mesoporous cobalt oxide enhance electrochemical oxygen evolution. ChemSusChem 2014, 7, 82–86.

    Article  Google Scholar 

  63. Liang, H. F.; Meng, F.; Cabán-Acevedo, M.; Li, L. S.; Forticaux, A.; Xiu, L. C.; Wang, Z. C.; Jin, S. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett. 2015, 15, 1421–1427.

    Article  Google Scholar 

  64. Masa, J.; Xia, W.; Sinev, I.; Zhao, A. Q.; Sun, Z. Y.; Grützke, S.; Weide, P.; Muhler, M.; Schuhmann, W. MnxOy/NC and CoxOy/NC nanoparticles embedded in a nitrogen-doped carbon matrix for high-performance bifunctional oxygen electrodes. Angew. Chem., Int. Ed. 2014, 53, 8508–8512.

    Article  Google Scholar 

  65. Kornienko, N.; Resasco, J.; Becknell, N.; Jiang, C.-M.; Liu, Y.-S.; Nie, K. Q.; Sun, X. H.; Guo, J. H.; Leone, S. R.; Yang, P. D. Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst. J. Am. Chem. Soc. 2015, 137, 7448–7455.

    Article  Google Scholar 

  66. Gorlin, Y.; Lassalle-Kaiser, B.; Benck, F. D.; Gul, S.; Webb, S. M.; Yachandra, V. K.; Yano, J.; Jaramillo, T. F. In situ X–ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. J. Am. Chem. Soc. 2013, 135, 8525–8534.

    Article  Google Scholar 

  67. Zhao, S. L.; Yin, H. J.; Du, L.; He, L. C.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. Carbonized nanoscale metal–organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660–12668.

    Article  Google Scholar 

  68. Mao, S.; Wen, Z. H.; Huang, T. Z.; Hou, Y.; Chen, J. H. High-performance bi-functional electrocatalysts of 3D crumpled graphene–cobalt oxide nanohybrids for oxygen reduction and evolution reactions. Energy Environ. Sci. 2014, 7, 609–616.

    Article  Google Scholar 

  69. Lu, Z.; Wang, H. T.; Kong, D. S.; Yan, K.; Hsu, P.-C.; Zheng, G. Y.; Yao, H. B.; Liang, Z.; Sun, X. M.; Cui, Y. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat. Commun. 2014, 5, 4345.

    Google Scholar 

  70. Zhuang, Z. B.; Sheng, W. C.; Yan, Y. S. Synthesis of monodispere Au@Co3O4 core–shell nanocrystals and their enhanced catalytic activity for oxygen evolution reaction. Adv. Mater. 2014, 26, 3950–3955.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyu Ren or Honggang Fu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Ren, Z., Du, S. et al. A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Res. 9, 713–725 (2016). https://doi.org/10.1007/s12274-015-0950-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0950-4

Keywords

Navigation