Skip to main content
Log in

High-power and long-life supercapacitive performance of hierarchical, 3-D urchin-like W18O49 nanostructure electrodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report the facile, one-pot synthesis of 3-D urchin-like W18O49 nanostructures (U-WO) via a simple solvothermal approach. An excellent supercapacitive performance was achieved by the U-WO because of its large Brunauer–Emmett–Teller (BET) specific surface area (ca. 123 m2·g–1) and unique morphological and structural features. The U-WO electrodes not only exhibit a high rate-capability with a specific capacitance (Csp) of ~235 F·g–1 at a current density of 20 A·g–1, but also superior long-life performance for 1,000 cycles, and even up to 7,000 cycles, showing ~176 F·g–1 at a high current density of 40 A·g–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.

    Article  Google Scholar 

  2. El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326–1330.

    Article  Google Scholar 

  3. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

    Article  Google Scholar 

  4. Hao, L.; Li, X. L.; Zhi, L. J. Carbonaceous electrode materials for supercapacitors. Adv. Mater. 2013, 25, 3899–3904.

    Article  Google Scholar 

  5. Naoi, A.; Naoi, W.; Aoyagi, S.; Miyamoto, J. I.; Kamino, T. New generation “nanohybrid supercapacitor”. Acc. Chem. Res. 2013, 46, 1075–1083.

    Article  Google Scholar 

  6. Oh, S. H.; Nazar, L. F. Direct synthesis of electroactive mesoporous hydrous crystalline RuO2 templated by a cationic surfactant. J. Mater. Chem. 2010, 20, 3834–3839.

    Article  Google Scholar 

  7. Hu, C. C.; Chang, K. H.; Lin, M. C.; Wu, Y. T. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 2006, 6, 2690–2695.

    Article  Google Scholar 

  8. Sugimoto, W.; Iwata, H.; Yokoshima, K.; Murakami, Y.; Takasu, Y. Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: The origin of large capacitance. J. Phys. Chem. B 2005, 109, 7330–7338.

    Article  Google Scholar 

  9. Lu, Q.; Lattanzi, M. W.; Chen, Y. P.; Kou, X. M.; Li, W. F.; Fan, X.; Unruh, K. M.; Chen, J. G.; Xiao, J. Q. Supercapacitor electrodes with high-energy and power densities prepared from monolithic NiO/Ni nanocomposites. Angew. Chem., Int. Ed. 2011, 50, 6847–6850.

    Article  Google Scholar 

  10. Xue, T.; Xu, C. L.; Zhao, D. D.; Li, X. H.; Li, H. L. Electrodeposition of mesoporous manganese dioxide supercapacitor electrodes through self-assembled triblock copolymer templates. J. Power Sources 2007, 164, 953–958.

    Article  Google Scholar 

  11. Wang, B.; Chen, J. S.; Wang, Z. Y.; Madhavi, S.; Lou, X. W. Green synthesis of NiO nanobelts with exceptional pseudo-capacitive properties. Adv. Energy Mater. 2012, 2, 1188–1192.

    Article  Google Scholar 

  12. Xia, X. H.; Tu, J. P.; Mai, Y. J.; Wang, X. L.; Gu, C. D.; Zhao, X. B. Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. J. Mater. Chem. 2011, 21, 9319–9325.

    Article  Google Scholar 

  13. Xie, K. Y.; Li, J.; Lai, Y. Q.; Lu, W.; Zhang, Z. A.; Liu, Y. X.; Zhou, L. M.; Huang, H. T. Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage. Electrochem. Commun. 2011, 13, 657–660.

    Article  Google Scholar 

  14. Wang, Y. G.; Li, H. Q.; Xia, Y. Y. Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv. Mater. 2006, 18, 2619–2623.

    Article  Google Scholar 

  15. Kim, J. H.; Lee, Y. S.; Sharma, A. K.; Liu, C. G. Polypyrrole/carbon composite electrode for high-power electrochemical capacitors. Electrochim. Acta 2006, 52, 1727–1732.

    Article  Google Scholar 

  16. Ghaemia, M.; Ataherian, F.; Zolfaghari, A.; Jafari, S. M. Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode: Effects of physisorbed water and proton conduction. Electrochim. Acta 2008, 53, 4607–4614.

    Article  Google Scholar 

  17. Xu, J.; Gao, L.; Cao, J. Y.; Wang, W. C.; Chen, Z. D. Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material. Electrochim. Acta 2010, 56, 732–736.

    Article  Google Scholar 

  18. Rajeswari, J.; Kishore, P. S.; Viswanathan, B.; Varadarajan, T. K. One-dimensional MoO2 nanorods for supercapacitor applications. Electrochem. Commun. 2009, 11, 572–575.

    Article  Google Scholar 

  19. Yoon, S.; Kang, E.; Kim, J. K.; Lee, C. W.; Lee, J. Development of high-performance supercapacitor electrodes using novel ordered mesoporous tungsten oxide materials with high electrical conductivity. Chem. Commun. 2011, 47, 1021–1023.

    Article  Google Scholar 

  20. Leftheriotis, G.; Papaefthimiou, S.; Yianoulis, P.; Siokou, A. Effect of the tungsten oxidation states in the thermal coloration and bleaching of amorphous WO3 films. Thin Solid Films 2001, 384, 298–306.

    Article  Google Scholar 

  21. Zou, B. X.; Liang, Y.; Liu, X. X.; Diamond, D.; Lau, K. T. Electrodeposition and pseudocapacitive properties of tungsten oxide/polyaniline composite. J. Power Sources 2011, 196, 4842–4848.

    Article  Google Scholar 

  22. Wang, D.; Li, J.; Cao, X.; Pang, G. S.; Feng, S. H. Hexagonal mesocrystals formed by ultra-thin tungsten oxide nanowires and their electrochemical behaviour. Chem. Commun. 2010, 46, 7718–7720.

    Article  Google Scholar 

  23. Huang, C. C.; Xing, W.; Zhuo, S. P. Capacitive performances of amorphous tungsten oxide prepared by microwave irradiation. Scripta Mater. 2009, 61, 985–987.

    Article  Google Scholar 

  24. Lu, X. H.; Zhai, T.; Zhang, X. H.; Shen, Y. Q.; Yuan, L. Y.; Hu, B.; Gong, L.; Chen, J.; Gao, Y. H.; Zhou, J. et al. WO3–x @Au@MnO2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv. Mater. 2012, 24, 938–944.

    Article  Google Scholar 

  25. Kulesza, P. J.; Faulkner, L. R. Electrocatalysis at a novel electrode coating of nonstoichiometric tungsten(VI, V) oxide aggregates. J. Am. Chem. Soc. 1988, 110, 4905–4913.

    Article  Google Scholar 

  26. Pauporté, T. A simplified method for WO3 electrodeposition. J. Electrochem. Soc. 2002, 149, C539–C545.

  27. Zou, B. X.; Liu, X. X.; Diamond, D.; Lau, K. T. Electrochemical synthesis of WO3/PANI composite for electrocatalytic reduction of iodate. Electrochim. Acta 2010, 55, 3915–3920.

    Article  Google Scholar 

  28. Khyzhun, O. Y.; Solonin, Y. M. Electronic structure of the monoclinic and hexagonal trioxides of tungsten and hexagonal hydrogen tungsten bronze H0.24WO3. Powder Metall. Met. Ceram. 2000, 39, 287–294.

    Article  Google Scholar 

  29. Li, Y.; Bando, Y.; Golberg, D. Quasi-aligned single-crystalline W18O49 nanotubes and nanowires. Adv. Mater. 2003, 15, 1294–1296.

    Article  Google Scholar 

  30. Liu, F.; Mo, F. Y.; Jin, S. Y.; Li, L.; Chen, Z. S.; Sun, R.; Chen, J.; Deng, S. Z.; Xu, N. S. A novel lift-off method for fabricating patterned and vertically-aligned W18O49 nanowire arrays with good field emission performance. Nanoscale 2011, 3, 1850–1854.

    Article  Google Scholar 

  31. Kojin, F.; Mori, M.; Morishita, T.; Inagaki, M. New visible light active photocatalyst, carbon-coated W18O49. Chem. Lett. 2006, 35, 388–389.

    Article  Google Scholar 

  32. Thangala, J.; Chen, Z. Q.; Chin, A.; Ning, C. Z.; Sunkara, M. K. Phase transformation studies of metal oxide nanowires. Cryst. Growth Des. 2009, 9, 3177–3182.

    Article  Google Scholar 

  33. Hong, K. Q.; Xie, M. H.; Hu, R.; Wu, H. S. Synthesizing tungsten oxide nanowires by a thermal evaporation method. Appl. Phys. Lett. 2007, 90, 173121–173123.

  34. Lou, X. W.; Zeng, H. C. An inorganic route for controlled synthesis of W18O49 nanorods and nanofibers in solution. Inorg. Chem. 2003, 42, 6169–6171.

    Article  Google Scholar 

  35. Frey, G. L.; Rothschild, A.; Sloan, J.; Rosentsveig, R.; Popovitz-Biro, R.; Tenne, R. Investigations of nonstoichiometric tungsten oxide nanoparticles. J. Solid State Chem. 2001, 162, 300–314.

    Article  Google Scholar 

  36. Zhou, Y. Y.; Ko, S.; Lee, C. W.; Pyo, S. G.; Kim, S. K.; Yoon, S. Enhanced charge storage by optimization of pore structure in nanocomposite between ordered mesoporous carbon and nanosized WO3-x . J. Power Sources 2013, 244, 777–782.

    Article  Google Scholar 

  37. Tian, Y. Y.; Cong, S.; Su, W. M.; Chen, H. Y.; Li, Q. W.; Geng, F. X.; Zhao, Z. G. Synergy of W18O49 and polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality. Nano Lett. 2014, 14, 2150–2156.

    Article  Google Scholar 

  38. Jo, C.; Hwang, J.; Song, H.; Dao, A. H.; Kim, Y. T.; Lee, S. H.; Hong, S. W.; Yoon, S.; Lee, J. Block-copolymerassisted one-pot synthesis of ordered mesoporous WO3-x /carbon nanocomposites as high-rate-performance electrodes for pseudocapacitors. Adv. Funct. Mater. 2013, 23, 3747–3754.

    Article  Google Scholar 

  39. Xiao, X.; Ding, T. P.; Yuan, L. Y.; Shen, Y. Q.; Zhong, Q. Z.; Zhang, X. H.; Cao, Y. Z.; Hu, B.; Zhai, T.; Gong, L. et al. WO3-x /MoO3-x core/shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors. Adv. Energy Mater. 2012, 2, 1328–1332.

    Article  Google Scholar 

  40. Xi, G. C.; Ouyang, S. X.; Li, P.; Ye, J. H.; Ma, Q.; Su, N.; Bai, H.; Wang, C. Ultrathin W18O49 nanowires with diameters below 1 nm: Synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew. Chem., Int. Ed. 2012, 51, 2395–2399.

    Article  Google Scholar 

  41. Bai, H.; Su, N.; Li, W. T.; Zhang, X.; Yan, Y.; Li, P.; Ouyang, S. X.; Ye, J. H.; Xi, G. C. W18O49 nanowire networks for catalyzed dehydration of isopropyl alcohol to propylene under visible light. J. Mater. Chem. A 2013, 1, 6125–6129.

    Article  Google Scholar 

  42. Xi, G. C.; Ye, J. H.; Ma, Q.; Su, N.; Bai, H.; Wang, C. In situ growth of metal particles on 3D urchin-like WO3 nanostructures. J. Am. Chem. Soc. 2012, 134, 6508–6511.

    Article  Google Scholar 

  43. Yella, A.; Tahir, M. N.; Meuer, S.; Zentel, R.; Berger, R.; Panthöfer, M.; Tremel, W. Synthesis, characterization, and hierarchical organization of tungsten oxide nanorods: Spreading driven by marangoni flow. J. Am. Chem. Soc. 2009, 131, 17566–17575.

    Article  Google Scholar 

  44. Huang, Z. F.; Song, J. J.; Pan, L.; Zhang, X. W.; Wang, L.; Zou, J. J. Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv. Mater. 2015, 27, 5309–5327.

    Article  Google Scholar 

  45. Zhang, Y.; Chen, Y. G.; Liu, H.; Zhou, Y. Q.; Li, R. Y.; Cai, M.; Sun, X. L. Three-dimensional hierarchical structure of single crystalline tungsten oxide nanowires: Construction, phase transition, and voltammetric behavior. J. Phys. Chem. C 2009, 113, 1746–1750.

    Article  Google Scholar 

  46. Park, K. S.; Min, K. M.; Jin, Y. H.; Seo, S. D.; Lee, G. H.; Shim, H. W.; Kim, D. W. Enhancement of cyclability of urchin-like rutile TiO2 submicron spheres by nanopainting with carbon. J. Mater. Chem. 2012, 22, 15981–15986.

    Article  Google Scholar 

  47. Shim, H. W.; Lim, A. H.; Kim, J. C.; Lee, G. H.; Kim, D. W. Hydrothermal realization of a hierarchical, flowerlike MnWO4@MWCNTs nanocomposite with enhanced reversible Li storage as a new anode material. Chem.—Asian J. 2013, 8, 2851–2858.

    Article  Google Scholar 

  48. Xu, L.; Shen, J. M.; Lu, C. L.; Chen, Y. P.; Hou, W. H. Selfassembled three-dimensional architectures of Y2(WO4)3:Eu: Controlled synthesis, growth mechanism, and shape-dependent luminescence properties. Cryst. Growth Des. 2009, 9, 3129–3136.

    Article  Google Scholar 

  49. Volanti, D. P.; Orlandi, M. O.; Andrés, J.; Longo, E. Efficient microwave-assisted hydrothermal synthesis of CuO sea urchin-like architectures via a mesoscale self-assembly. CrystEngComm 2010, 12, 1696–1699.

    Article  Google Scholar 

  50. Zhang, Q. F.; Dandeneau, C. S.; Zhou, X. Y.; Cao, G. Z. ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 2009, 21, 4087–4108.

    Article  Google Scholar 

  51. Wang, L.; Liu, X. W.; Lu, G. Z.; Wang, Y. Q. Evolution of SnO2 nanoparticles into 3D nanoflowers through crystal growth in aqueous solution and its optical properties. Mater. Chem. Phys. 2011, 127, 114–119.

    Article  Google Scholar 

  52. Sun, Z. Q.; Kim, J. H.; Zhao, Y.; Bijarbooneh, F.; Malgras, V.; Lee, Y.; Kang, Y. M.; Dou, S. X. Rational design of 3D dendritic TiO2 nanostructures with favorable architectures. J. Am. Chem. Soc. 2011, 133, 19314–19317.

    Article  Google Scholar 

  53. Guo, C. S.; Yin, S.; Yan, M.; Kobayashi, M.; Kakihana, M.; Sato, T. Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties. Inorg. Chem. 2012, 51, 4763–4771.

    Article  Google Scholar 

  54. Mullin, J. W. Crystallization, 3rd ed.; Butterworth-Heinemann: Oxford, 1993.

    Google Scholar 

  55. Zhou, Y. Q.; Zhang, Y.; Li, R. Y.; Cai, M.; Sun, X. L. Onestep in situ synthesis and characterization of W18O49@carbon coaxial nanocables. J. Mater. Res. 2009, 24, 1833–1841.

    Article  Google Scholar 

  56. Faughnan, B. W.; Crandall, R. S.; Heyman, P. M. Electrochromic in WO3 amorphous films. RCA Rev. 1975, 36, 177–197.

    Google Scholar 

  57. Hou, L. R.; Yuan, C. Z.; Yang, L.; Shen, L. F.; Zhang, F.; Zhang, X. G. Urchin-like Co3O4 microspherical hierarchical superstructures constructed by one-dimension nanowires toward electrochemical capacitors. RSC Adv. 2011, 1, 1521–1526.

    Article  Google Scholar 

  58. Wang, H. L.; Holt, C. M. B.; Li, Z.; Tan, X. H.; Amirkhiz, B. S.; Xu, Z. W.; Olsen, B. C.; Stephenson, T.; Mitlin, D. Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res. 2012, 5, 605–617.

    Article  Google Scholar 

  59. Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L. C. Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 2011, 49, 2917–2925.

    Article  Google Scholar 

  60. Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; Mai, Y. J.; Wang, X. L.; Gu, C. D.; Zhao, X. B. Freestanding Co3O4 nanowire array for high performance supercapacitors. RSC Adv. 2012, 2, 1835–1841.

    Article  Google Scholar 

  61. Fan, Z. J.; Yan, J.; Wei, T.; Zhi, L. J.; Ning, G. Q.; Li, T. Y.; Wei, F. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 2011, 21, 2366–2375.

    Article  Google Scholar 

  62. Park, S.; Shim, H. W.; Lee, C. W.; Song, H. J.; Park, I. J.; Kim, J. C.; Hong, K. S.; Kim, D. W. Tailoring uniform γ-MnO2 nanosheets on highly conductive three-dimensional current collectors for high-performance supercapacitor electrodes. Nano Res. 2015, 8, 990–1004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Wan Kim.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Shim, HW., Lee, C.W. et al. High-power and long-life supercapacitive performance of hierarchical, 3-D urchin-like W18O49 nanostructure electrodes. Nano Res. 9, 633–643 (2016). https://doi.org/10.1007/s12274-015-0943-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0943-3

Keywords

Navigation