Skip to main content
Log in

Effect of defects on photocatalytic activity of rutile TiO2 nanorods

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

To further understand the effect of structural defects on the electrochemical and photocatalytic properties of TiO2, two synthetic approaches based on hydrothermal synthesis and post-synthetic chemical reduction to achieve oxygen defectimplantation were developed herein. These approaches led to the formation of TiO2 nanorods with uniformly distributed defects in either the bulk or on the surface, or the combination of both, in the formed TiO2 nanorods (NRs). Both approaches utilize unique TiN nanoparticles as the reaction precursor. Electron microscopy and Brunauer-Emmett-Teller (BET) analyses indicate that all the studied samples exhibit similar morphology and similar specific surface areas. X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) data confirm the existence of oxygen defects (VO). The photocatalytic properties of TiO2 with different types of implanted VO were evaluated based on photocatalytic H2 production. By optimizing the concentration of VO among the TiO2 NRs subjected to different treatments, significantly higher photocatalytic activities than that of the stoichiometric TiO2 NRs was achieved. The incident photon-to-current efficiency (IPCE) data indicate that the enhanced photocatalytic activity arises mainly from defect-assisted charge separation, which implies that photo-generated electrons or holes can be captured by VO and suppress the charge recombination process. The results show that the defective TiO2 obtained by combining the two approaches exhibits the greatest photocatalytic activity enhancement among all the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.

    Article  Google Scholar 

  2. Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.

    Article  Google Scholar 

  3. Bard, A. J.; Fox, M. A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 1995, 28, 141–145.

    Article  Google Scholar 

  4. Li, X.; Wen, J. Q.; Low, J.; Fang, Y. P.; Yu, J. G. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci. China Mater. 2014, 57, 70–100.

    Article  Google Scholar 

  5. Ma, Y.; Wang, X. L.; Jia, Y. S.; Chen, X. B.; Han, H. X.; Li, C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 2014, 114, 9987–10043.

    Article  Google Scholar 

  6. Liu, L.; Chen, X. B. Titanium dioxide nanomaterials: Selfstructural modifications. Chem. Rev. 2014, 114, 9890–9918.

    Article  Google Scholar 

  7. Bally, A. R.; Korobeinikova, E. N.; Schmid, P. E.; Lévy, F.; Bussy, F. Structural and electrical properties of Fe-doped TiO2 thin films. J. Phys. D: Appl. Phys. 1998, 31, 1149–1154.

    Article  Google Scholar 

  8. Nowotny, M. K.; Sheppard, L. R.; Bak, T.; Nowotny, J. Defect chemistry of titanium dioxide. Application of defect engineering in processing of TiO2-based photocatalysts. J. Phys. Chem. C 2008, 112, 5275–5300.

    Article  Google Scholar 

  9. Pan, X. Y.; Yang, M. Q.; Fu, X. Z.; Zhang, N.; Xu, Y. J. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601–3614.

    Article  Google Scholar 

  10. Hu, Y. H. A highly efficient photocatalyst - Hydrogenated black TiO2 for the photocatalytic splitting of water. Angew. Chem., Int. Ed. 2012, 51, 12410–12412.

    Article  Google Scholar 

  11. Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600–7603.

    Article  Google Scholar 

  12. Zuo, F.; Wang, L.; Wu, T.; Zhang, Z. Y.; Borchardt, D.; Feng, P. Y. Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc. 2010, 132, 11856–11857.

    Article  Google Scholar 

  13. Zheng, Z. K.; Huang, B. B.; Meng, X. D.; Wang, J. P.; Wang, S. Y.; Lou, Z. Z.; Wang, Z. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. Metallic zinc-assisted synthesis of Ti3+ selfdoped TiO2 with tunable phase composition and visible-light photocatalytic activity. Chem. Commun. 2013, 49, 868–870.

    Article  Google Scholar 

  14. Zhao, Z.; Tan, H. Q.; Zhao, H. F.; Lv, Y.; Zhou, L.-J.; Song, Y. J.; Sun, Z. C. Reduced TiO2 rutile nanorods with welldefined facets and their visible-light photocatalytic activity. Chem. Commun. 2014, 50, 2755–2757.

    Article  Google Scholar 

  15. Zuo, F.; Bozhilov, K.; Dillon, R. J.; Wang, L.; Smith, P.; Zhao, X.; Bardeen, C.; Feng, P. Y. Active facets on titanium(III)-doped TiO2: An effective strategy to improve the visible-light photocatalytic activity. Angew. Chem., Int. Ed. 2012, 124, 6327–6330.

    Article  Google Scholar 

  16. Justicia, I.; Ordejón, P.; Canto, G.; Mozos, J. L.; Fraxedas, J.; Battiston, G. A.; Gerbasi, R.; Figueras, A. Designed selfdoped titanium oxide thin films for efficient visible-light photocatalysis. Adv. Mater. 2002, 14, 1399–1402.

    Article  Google Scholar 

  17. Han, B.; Hu, Y. H. Highly efficient temperature-induced visible light photocatalytic hydrogen production from water. J. Phys. Chem. C 2015, 119, 18927–18934.

    Article  Google Scholar 

  18. Wang, G. M.; Ling, Y. C.; Li, Y. Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale 2012, 4, 6682–6691.

    Article  Google Scholar 

  19. Yang, Y.; Ling, Y. C.; Wang, G. M.; Li, Y. The effect of the hydrogenation temperature on TiO2 nanostructures for photoelectrochemical water oxidation. Eur. J. Inorg. Chem. 2014, 2014, 760–766.

    Article  Google Scholar 

  20. Pesci, F. M.; Wang, G. M.; Klug, D. R.; Li, Y.; Cowan, A. J. Efficient suppression of electron–hole recombination in oxygen-deficient hydrogen-treated TiO2 nanowires for photoelectrochemical water splitting. J. Phys. Chem. C 2013, 117, 25837–25844.

    Article  Google Scholar 

  21. Tan, H. Q.; Zhao, Z.; Niu, M.; Mao, C. Y.; Cao, D. P.; Cheng, D. J.; Feng, P. Y.; Sun, Z. C. A facile and versatile method for preparation of colored TiO2 with enhanced solardriven photocatalytic activity. Nanoscale 2014, 6, 10216–10223.

    Article  Google Scholar 

  22. Mao, C. Y.; Zuo, F.; Hou, Y.; Bu, X. H.; Feng, P. Y. In situ preparation of a Ti3+ self-doped TiO2 film with enhanced activity as photoanode by N2H4 reduction. Angew. Chem., Int. Ed. 2014, 126, 10653–10657.

    Article  Google Scholar 

  23. Zuo, F.; Bozhilov, K.; Dillon, R. J.; Wang, L.; Smith, P.; Zhao, X.; Bardeen, C.; Feng, P. Y. Active facets on titanium(III)-doped TiO2: An effective strategy to improve the visible-light photocatalytic activity. Angew. Chem., Int. Ed. 2012, 51, 6223–6226.

    Article  Google Scholar 

  24. Xia, T.; Chen, X. B. Revealing the structural properties of hydrogenated black TiO2 nanocrystals. J. Mater. Chem. A 2013, 1, 2983–2989.

    Article  Google Scholar 

  25. Zhou, W.; Li, W.; Wang, J.-Q.; Qu, Y.; Yang, Y.; Xie, Y.; Zhang, K. F.; Wang, L.; Fu, H. G.; Zhao, D. Y. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J. Am. Chem. Soc. 2014, 136, 9280–9283.

    Article  Google Scholar 

  26. Horikoshi, S.; Minatodani, Y.; Tsutsumi, H.; Uchida, H.; Abe, M.; Serpone, N. Influence of lattice distortion and oxygen vacancies on the UV-driven/microwave-assisted TiO2 photocatalysis. J. Photoch. Photobio. A 2013, 265, 20–28.

    Article  Google Scholar 

  27. Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229.

    Article  Google Scholar 

  28. Li, X.; Yu, J. G.; Low, J.; Fang, Y. P.; Xiao, J.; Chen, X. B. Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 2015, 3, 2485–2534.

    Article  Google Scholar 

  29. Chen, X. B.; Liu, L.; Huang, F. Q. Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 2015, 44, 1861–1885.

    Article  Google Scholar 

  30. Chen, X. B.; Liu, L.; Liu, Z.; Marcus, M. A.; Wang, W.-C.; Oyler, N. A.; Grass, M. E.; Mao, B. H.; Glans, P.-A.; Yu, P. Y. et al. Properties of disorder-engineered black titanium dioxide nanoparticles through hydrogenation. Sci. Rep. 2013, 3, 1510.

  31. Hamdy, M. S.; Amrollahi, R.; Mul, G. Surface Ti3+-containing (blue) titania: A unique photocatalyst with high activity and selectivity in visible light-stimulated selective oxidation. ACS. Catal. 2012, 2, 2641–2647.

    Article  Google Scholar 

  32. Hanawa, T. A comprehensive review of techniques for biofunctionalization of titanium. J. Periodontal Implant Sci. 2011, 41, 263–272.

    Article  Google Scholar 

  33. Conesa, J. C.; Soria, J. Reversible titanium(3+) formation by hydrogen adsorption on m/anatase (TiO2) catalysts. J. Phys. Chem. 1982, 86, 1392–1395.

    Article  Google Scholar 

  34. Zuo, F.; Wang, L.; Feng, P. Y. Self-doped Ti3+@TiO2 visible light photocatalyst: Influence of synthetic parameters on the H2 production activity. Int. J. Hydrogen Energy 2014, 39, 711–717.

    Article  Google Scholar 

  35. Sayed, F. N.; Jayakumar, O. D.; Sasikala, R.; Kadam, R. M.; Bharadwaj, S. R.; Kienle, L.; Schürmann, U.; Kaps, S.; Adelung, R.; Mittal, J. P. et al. Photochemical hydrogen generation using nitrogen-doped TiO2–Pd nanoparticles: Facile synthesis and effect of Ti3+ incorporation. J. Phys. Chem. C 2012, 116, 12462–12467.

    Article  Google Scholar 

  36. Howe, R. F.; Gratzel, M. EPR Observation of trapped electrons in colloidal titanium dioxide. J. Phys. Chem. 1985, 89, 4495–4499.

    Article  Google Scholar 

  37. Lu, H. Q.; Zhao, B. B.; Pan, R. L.; Yao, J. F.; Qiu, J. H.; Luo, L.; Liu, Y. C. Safe and facile hydrogenation of commercial degussa P25 at room temperature with enhanced photocatalytic activity. RSC Adv. 2014, 4, 1128–1132.

    Article  Google Scholar 

  38. Teng, F.; Li, M. Y.; Gao, C. T.; Zhang, G. Z.; Zhang, P.; Wang, Y. Q.; Chen, L. L.; Xie, E. Q. Preparation of black TiO2 by hydrogen plasma assisted chemical vapor deposition and its photocatalytic activity. Appl. Catal. B-Environ. 2014, 148–149, 339–343.

    Google Scholar 

  39. Maeda, Y.; Iizuka, Y.; Kohyama, M. Generation of oxygen vacancies at a Au/TiO2 perimeter interface during CO oxidation detected by in situ electrical conductance measurement. J. Am. Chem. Soc. 2013, 135, 906–909.

    Article  Google Scholar 

  40. Strunk, J.; Vining, W. C.; Bell, A. T. A study of oxygen vacancy formation and annihilation in submonolayer coverages of TiO2 dispersed on MCM-48. J. Phys. Chem. C 2010, 114, 16937–16945.

    Article  Google Scholar 

  41. Yu, X. M.; Kim, B.; Kim, Y. K. Highly enhanced photoactivity of anatase TiO2 nanocrystals by controlled hydrogenationinduced surface defects. ACS. Catal. 2013, 3, 2479–2486.

    Article  Google Scholar 

  42. Maeda, K.; Higashi, M.; Siritanaratkul, B.; Abe, R.; Domen, K. SrNbO2N as a water-splitting photoanode with a wide visible-light absorption band. J. Am. Chem. Soc. 2011, 133, 12334–12337.

    Article  Google Scholar 

  43. Wang, G. M.; Wang, H. Y.; Ling, Y. C.; Tang, Y. C.; Yang, X. Y.; Fitzmorris, R. C.; Wang, C. C.; Zhang, J. Z.; Li, Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2011, 11, 3026–3033.

    Article  Google Scholar 

  44. Ling, Y. C.; Wang, G. M.; Reddy, J.; Wang, C. C.; Zhang, J. Z.; Li, Y. The influence of oxygen content on the thermal activation of hematite nanowires. Angew. Chem., Int. Ed. 2012, 124, 4150–4155.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pingyun Feng or Zaicheng Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Zhang, X., Zhang, G. et al. Effect of defects on photocatalytic activity of rutile TiO2 nanorods. Nano Res. 8, 4061–4071 (2015). https://doi.org/10.1007/s12274-015-0917-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0917-5

Keywords

Navigation